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Abstract

In this paper, I investigate methods of visualizing solutions to the
One-Dimensional Time-Dependent Schrödinger Equation. Last year,
I researched and implemented a numerical method which integrates
the Schrödinger equation directly in order to evolve a state in time.
Although successful, it has severe speed limitations and suffers from
many common problems of a numerical integrator including propa-
gation of error over time resulting in divergences from conservation
laws. In this paper, we’ll derive the previous method, show some of
the problems with it, and propose an improved algorithm to solves
the time-independent Schrödinger equation for an arbitrary potential,
then evolves these eigenstates in time.
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Introduction

At the beginning of the twentieth century, experimental evidence suggested
that atomic particles were also wave-like in nature. For example, electrons
were found to give diffraction patterns when passed through a double slit in
a similar way to light waves. Therefore, it was reasonable to assume that a
wave equation could explain the behavior of atomic particles.

Schrödinger was the first to write down such a wave equation. Many
physicists spent years interpreting the Schrödinger equation, finding new
ways to visualize particles, and generally attempting to reformulate the clas-
sical image of physics. An extreme difficulty is that the Schrödinger equa-
tion includes a function called the Potential Energy Function V (x), which
changes based on the system you are interested in. Thus, the Schrödinger
equation cannot have a stand alone solution and many systems with rather
simple potentials also do not have closed form solutions. Numerical integra-
tion methods must then be used to find an approximation of the solution.
Many computational physicists have tackled this problem to produce movies
and examples of certain educationally interesting examples in order to pro-
vide a medium in which the effects of quantum mechanics can literally be
seen. As of last year when this project started, I could not find a single
real-time integrator though. Since then, they seem to have been popping up
everywhere. One of my favorite is Paul Falstad. In early 2005, he released
an applet on his website which accomplished what I had wanted to try since
I finished my first version a year earlier. His applet peaked my interest since
it ran incredibly fast and smoothly. All the methods I had previously seen
for finding eigenstates of a potential were iterative and slow, I knew I must
be missing something. Unfortunately, at the time I took up this project, he
had not released his source. Thus, this project extends my previous work on
creating a real-time tool to visualize some of the implications of quantum
mechanics by attempting to reproduce some of Paul Falstad’s results.

Derivation of Time-Dependent Numerical Method

Feynman, in many of his computational methods, assumed all constants to
be one for simplicity of calculations. In the numerical approach here, we
will do the same. We define h̄ = 1,me = 1, qe = −1. The time dependent
Schrödinger Equation in one dimension then becomes

ı
∂Ψ(x, t)

∂t
= −1

2
∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) (1)
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To integrate this numerically, we must of course work in a discrete world.
Thus, Ψ(x, t) must be reduced to a domain of equally spaced points: xj =
x0 + jdx. At these points define Ψ(xj , t) = Ψj(t) and V (xj) = Vj . The
Schrödinger Equation then becomes

ı
∂Ψj(t)

∂t
= −1

2
∂2

∂x2
Ψj(t) + VjΨj(t) (2)

where we can use the standard approximation ∂2

∂x2 Ψj(t) ' Ψj+1(t)−2Ψj(t)+Ψj−1(t)
∂x2

to yield:

ı
∂Ψj(t)

∂t
= −Ψj+1(t)− 2Ψj(t) + Ψj−1(t)

2∂x2
+ VjΨj(t) (3)

Now, the Schrödinger equation is like a first order differential equation in
time of a vector with a dimension j, where j is the number of spatial points.
Integrals involving Ψ(x, t) can be approximated using the discretized ap-
proximation of Ψ. For example,∫

Ψ∗Ψdx =
∫
‖Ψ(x, t)‖2dx =

∑
j

‖Ψj(t)‖2 (4)

〈x〉(t) =
∫

Ψ∗xΨdx =
∑
j

xj‖Ψj(t)‖2 (5)

There is a difficulty in solving the this equation in that it is ”stiff”. Thus
if you try the simple Euler approximation ∂Ψj(t)

∂t = Ψj(t+dt)−Ψj(t)
∂t with the

resulting equation

Ψj(t + dt) = Ψj(t) + ı∂t

(
−Ψj+1(t)− 2Ψj(t) + Ψj−1(t)

2∂x2
+ VjΨj(t)

)
(6)

you will find the norm of the wave function diverges fairly quickly. This
is characteristic of a ”stiff” system, one in which the eigenvalues of the
Jacobean matrix differ greatly in magnitude, causing instability. One of the
primary postulates of Quantum Mechanics is the Principle of Conservation
of Probability, which will clearly not occur if the norm of the wave function
is diverging. Thus, a more accurate approach is needed. By extending the
Euler approximation forward and backward in the standard way, we find

that ∂Ψj(t+
dt
2

)

∂t ' 1
2

(
Ψj(t+dt)−Ψj(t+

dt
2

)

∂t/2 + Ψj(t+
dt
2

)−Ψj(t)

∂t/2

)
= Ψj(t+dt)−Ψj(t)

∂t and

Ψj(t + dt
2 ) ' Ψj(t)+Ψj(t+dt)

2 , which can be combined with Equation 3 to
eventually yield

Ψj(t+dt)−ı
∂t

2

(
−Ψj+1(t + dt)− 2Ψj(t + dt) + Ψj−1(t + dt)

2∂x2
+VjΨj(t+dt)

)
3



= Ψj(t +
dt

2
) =

Ψj(t) + ı
∂t

2

(
− Ψj+1(t)− 2Ψj(t) + Ψj−1(t)

2∂x2
+ VjΨj(t)

)
(7)

The right hand side of this equation is something that we can calculate, call
it Φj .

Ψj(t + dt)− ı
∂t

2

(
− Ψj+1(t + dt)− 2Ψj(t + dt) + Ψj−1(t + dt)

2∂x2
+ VjΨj(t + dt)

)
= Φj(t) (8)

The wave function at time t + dt can then be obtained from solving

DjΨj(t + dt) + µΨj−1(t + dt) + µΨj+1(t + dt) = Φj(t) (9)

where Dj = 1 +
(
ı∂t

2

)(
Vj + 1

∂x2

)
and µ = −ı ∂t

4∂x2 . This forms a tridiagonal
matrix equation which can be most easily solved for Ψ(t + dt) when it’s
written as

µΨ2 + D1Ψ1 = Φ1 (10)
µΨ3 + D2Ψ2 + µΨ1 = Φ2 (11)
µΨ4 + D3Ψ3 + µΨ2 = Φ3 (12)

...

These equations can be solved in the following manner. Multiply Eq. 10 by
− µ

D1
and add to Eq. 11 to get

µΨ2 + D1Ψ1 = Φ1 (13)
µΨ3 + d2Ψ2 = f2 (14)

µΨ4 + D3Ψ3 + µΨ2 = Φ3 (15)

...

where f2 = Φ2 − µΦ1
D1

and d2 = D2 − µ2

D1
. Now multiply Eq. 14 by − µ

d2
and

add to Eq. 15 to get

µΨ2 + D1Ψ1 = Φ1 (16)
µΨ3 + d2Ψ2 = f2 (17)
µΨ4 + d3Ψ3 = f3 (18)

...
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where f3 = Φ3−µ f2

d2
and d3 = D3− µ2

d2
. This can be repeated for all points.

The algorithm can be written as
(1) d1 = D1 and f1 = Φ1

(2) For j greater than or equal to 2 and less then or equal the number of
spatial points, calculate

fj = Φj − µ
fj−1

dj−1
and dj = Dj − µ2

dj−1
.

(3) Finally, calculate

Ψn = fn/dn (19)

Ψn−1 =
fn−1 − µΨn

dn−1
(20)

Ψn−2 =
fn−2 − µΨn−1

dn−2
(21)

...

Notice that if you evaluate the equations in the order given then the right
hand side in each equation is already calculated by the time it is needed.
This sequence of steps gives Ψj(t + dt). An important property of this
numerical propagator is that the norm of the wave function does not change
significantly with time, as we will show. An important point to remember
with this algorithm is that it used Ψ0 = 0 and Ψn+1 = 0. Thus, we have
implicitly built in the stipulation that we are propagating Schrödinger’s
equation with the potential V (x) with infinite walls at the points x0 and
xn+1. Also, an interesting note is that we can also let Vj → Vj(t) without
any problem in the derivation. Thus, this algorithm can easily handle time-
dependent potentials, although this was never implemented or tested. The
following code implements the algorithm:

5



/*

* An relatively unoptimized version of the integrator derived above.

*/

void incrementInTime(Complex[] psi, double tStep)

{

Complex[] d = new Complex[psi.length];

Complex[] phi = new Complex[psi.length];

double pref = tStep/(4.0*dx*dx);

Complex mu = new Complex(0,-pref);

for( int j = 1; j < psi.length - 2; ++j ) {

double imag = .5*tStep*vPot[j];

phi[j] = psi[j].times(1.0, -imag).add(psi[j+1].plus(psi[j-1]).mult(0,pref));

d[j] = new Complex(1.0, imag);

}

for( int j = 2; j < psi.length; ++j ) {

phi[j].sub(phi[j-1].times(offd).div(d[j-1]));

d[j].sub(mu.squared().div(d[j-1]));

}

for( int j = psi.length - 2; j >= 1; --j ) {

psi[j] = phi[j].minus(psi[j+1].times(mu)).div(d[j]);

}

}

Finally, we note that this runs in O(J) time. However, we have to sweep
through the array 3 times performing many calculations each time. This
algorithm is much faster when Complex objects are not used, reducing tem-
porary object allocation overhead.

Calculating and Evolving the Eigenfunctions

As we’ve learned throughout quantum mechanics, every Hamiltonian Ĥ =
p̂2

x
2m +V (x̂) = 1

2m
∂2

∂x2 +V (x) defines an orthogonal complete set of eigenstates
ϕn(x) with eigenvalues En such that

Ĥϕn(x) = Enϕn(x) (22)

Since ϕn(x) form a complete set, we can express our state as Ψ(x) =∑
n anϕn(x). We also know that the state ϕn(x) evolves in time through

application of the time evolution operator Û = e−iĤt, so that ϕn(x, t) =
e−iĤtϕn(x) = e−iEntϕn(x). Our full state can then be expressed as

Ψ(x, t) =
∑
n

ane−iEntϕn(x) (23)
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However, in order to determine En and ϕn(x) for all n, we must solve
the eigenvalue equation from 22, reproduced in descritized form here:

∂2ϕnj

∂x2
= 2m[Vj − En]ϕnj (24)

using the same second second derivative approximation as before, we have

ϕnj − 2ϕnj + ϕnj = 2m∂x2[Vj − En]ϕnj (25)

which forms a matrix eigenvalue equation:

−1
2m∂x2


−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0 · · ·
0 0 1 −2 1

...
. . .




ϕn1

ϕn2

ϕn3
...

ϕnj

−


V1

V2

V3
...

Vj




ϕn1

ϕn2

ϕn3
...

ϕnj

 = En


ϕn1

ϕn2

ϕn3
...

ϕnj


Thus, we need to find the eigenvalues of

−1
2m∂x2


−2− V1 1 0 0 0

1 −2− V2 1 0 0
0 1 −2− V3 1 0 · · ·
0 0 1 −2− V4 1

...
. . .

 (26)

This is a real, symmetric, tridiagonal matrix! A popular procedure called
the TQLI (Tridiagonal QL Implicit) algorithm can find the eigenvalues of
this matrix exceptionally well in O(J2) time. This algorithm can also find
the eigenvectors (our eigenstates ϕn(x)), but it requires O(J3) time and
is not integral to the eigenvalue calculation. Thus, when the potential is
being modified directly by the user, we can calculate only the eigenvalues
until the user is done. This will make the program adapt the energy levels
in the potential window very quickly, but not allow us to evolve a state in
time until the user is finished. I found the effect of being able to see the
energy levels adjust in real-time to my modification much more satisfying
than having a state evolve as I was doing it. The TQLI call looks like:
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/*

* Calculates the energy eigenvalues and optionally the eigenstates of

* a potential defined in pot. If tempModes is null, eigenstates are not

* calculated. If it is the identity matrix, eigenstates are stored into it.

*/

double[] calculateEigs(double[] pot, double[][] tempModes)

{

double diag[] = new double[pot.length];

double subDiag[] = new double[pot.length];

double fac = -1/(2 * massBar.getValue() * dx * dx);

for( int i = 0; i < pot.length; ++i ) {

subDiag[i] = fac;

diag[i] = -2 * fac - pot[i];

}

tqli(diag, subDiag, pot.length, tempModes);

double[] E = diag;

if( tempModes == null )

sort(E); // Sorts the energies

else

sort(E, tempModes); // Sorts the energies,

// preserving the mode <=> energy indices

return E;

}

See Numerical Recipes in C++ for a discussion and presentation of the TQLI
algorithm. Very few modifications were made to it and a discussion of the
matrix decomposition does not seem appropriate here.

We see the importance now of requiring that the potential is infinite on
each of the boundaries. If this were not the case, the matrix size would be
unbounded and, just like the iterative method, our eigenvalues would case
the state to diverge eventually. In the case with infinite potential walls,
we understand that the state goes to zero at the boundaries and can stop
there. Although there are still unavoidable inaccuracies, we at least have a
bounded, sensible, and controllable eigenstate.

Thus, we can now determine the eigenstates of any potential relatively
quickly and easily and construct a wave function by either combining the
eigenstates or decomposing an existing state (such as a user-defined Gaussian):
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/*

* Construct a normalized Gaussian wavefunction with initial

* <x> = xInit

* <p> = pInit

* psi needs to be initialized to the length (resolution) of the system.

*/

void constructGauss(Complex[] psi, double xInit, double waveWidth, double pInit)

{

double sum = 0;

double x = -xInit;

double s;

for( int i = 1; i < psi.length-1; ++i ) {

x += dx;

s = x/waveWidth;

psi[i] = Complex.exp(-s*s, pInit*x);

sum += psi[i].absSq();

}

psi[0] = psi[length] = Complex.zero;

double norm = 1.0/Math.sqrt(sum * dx);

for( int i = 1; i < psi.length-1; ++i ) {

psi[i].mult(norm);

}

/* A state is a Complex-valued function which we wish to express as a

* series of orthogonal eigenfunctions. modes[n] is the real-valued

* nth eigenfunction. This returns a Complex-valued array of projections

* onto the eigenstates which we can use to draw phasors and evolve the

* original state in time easily.

*/

Complex[] decomposeState(Complex[] psi, double[][] modes)

{

Complex[] proj = new Complex[modes.length];

for( int n = 0; n < modes.length; ++n ) {

Complex sum = new Complex();

double[] eigSt = modes[n];

for( int i = 1; i < state.length; ++i )

sum.add(psi[i].times(eigSt[i]));

if( sum.isSmall(epsilon) )

sum.setToZero();

proj[n] = sum.times(dx);

}

return proj;

}
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/*

* This function takes a time step, the list of a_n projections, the

* eigenfunctions of the potential, and the energy eigenvalues E to

* calculate a new state psi. Note this function also updates the

* proj array by a phase determined by the time step.

*/

Complex[] evolveStateInTime(double tStep, Complex[] proj, double[][] modes, double[] E)

{

t += tStep;

Complex nMult;

Complex[] nMode;

Complex[] psi = Complex.zeroArray(psi.length);

for( int n = 0; n < modes.length; ++n ) {

if( proj[n].isZero() )

continue;

nMult = proj[n].mult(Complex.exp(0, -E[n] * t));

nMode = modes[n];

for( int i = 1; i < psi.length - 1; ++i ) {

psi[i].add(nMult.times(nMode[i]));

}

}

return psi;

}

Thus, after precalculating the energy eigenvalues and corresponding eigen-
functions, we can calculate the state at any point in time in O(NJ) time (a
high bound on many states since we can skip zeroed projections).

An interesting result that we can take advantage of is that since we can
calculate the state at any time, we can not only let tStep be related to a
user-defined speed control device, but ALSO be related to the last time we
updated the graph. Thus, presuming we can draw the graphs faster than
15-20 frames/sec (not difficult), the output will be smooth and fewer ’jumps’
will occur when the system misses a beat in our process. The incremental
algorithm cannot do this nearly as elegantly or stably.

Converting to Momentum Space

In quantum, we saw that a wave function can be converted from position
space to momentum space through:

〈x|p〉 =
1√
2π

eipx (27)

Ψ(p) = 〈p|Ψ〉 =
∫

dx〈p|x〉〈x|Ψ〉 =
∫

dx
1√
2π

eipxΨ(x) (28)
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This is the well known Fourier Transform relationship between position
and momentum space. Since it is so popular, it has many simple solutions
that are readily implemented. I used the double precision dfour1 algorithm
found in Numerical Recipes, section 12.2. It takes a single array of length
2N = 2x representing [real, imag] complex pairs and replaces this array
with its discrete Fourier transform. In order to call this routine, we have
to make sure the array is the smallest array we can make that is larger
than our resolution but still a power of 2 in length. Additionally, I made
some simple modifications to the FFT algorithm so that it will work with
our Complex class (i.e. made a mapping between 2N = 2x and N = 2x,
combining adjacent cells). Thus, we’ll simply copy the data into an array
for the dfour1 function:

/*

* This takes our state psi and projects it into momentum space by performing a FFT.

* pSize is a power of 2 that is just larger than psi.length.

* First, the psi must be fftshifted so that the center corresponds to the f0 position.

* This rearranging preserves periodicity and pads the center with zeroes (note that psi

* goes to zero anyway)

*/

Complex[] getPFunc(Complex[] psi, int pSize)

{

Complex[] p = Complex.zeroArray(pSize);

int halfCount = sampleCount/2, index, n = psi.length - 1;

// fftshift so that x = 0 (psi[halfCount]) is in first position

for( int i = 0; i < psi.length; ++i ) { // and also pads the center with zeroes

index = i <= halfCount ? halfCount - i : p.length + halfCount - i;

p[index] = psi[n - i];

}

dfour1(p, pSize, 1); // Modified to accomodate our Complex class

// Rather than waisting time fftshifting and normalizing,

// I let the momentum grapher do it implicitly

}

Although the adaptation of dfour1 to use our Complex class causes it to
have a small amount of undue overhead, I find that it’s beneficial later on in
graphing. It prevents us from having to make multiple conversions between
double arrays and Complex arrays amid calculation and graphing as well as
preserving homogeneity and reuseability of annoying graphing code.
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Comparing Conservation of Probability

One interesting comparison between these two approaches is how well they
uphold the Law of Conservation of Probability. To test this, we obtain
a printout of the norm of the wave function at every iteration for some
benchmark test under each algorithm. The benchmark initial conditions are
shown in Figure 1. I hardcoded a Gaussian benchmark in the infinite well
potential. Take note of the highest resolution setting.

Figure 1: A plot of the wavenorm over time using each of the integration
methods.

I also verified that the tStep’s were calibrated correctly so that over the
course of these iterations, approximately the same final state was reached.
We can now run this benchmark using each of the methods presented here.
Figure 2 shows the results of these two methods.

As we expect, the eigenfunction decomposition algorithm has no error-
build up since it simply does not even use the previous Ψ(x, t) in its calcula-
tion of Ψ(x, t + dt). Thus, any error that is present is roundoff error (which
actually did create an error of approximately 25× 10−15 in each data point)
and is not compiled over time. In contrast of course, the direct numerical
method does depend on its previous Ψ(x, t) so error is accumulated, though
slowly indeed. In the 35000 time iterations it was run, the norm decreased
by less 0.06%. This corresponds to approximately 2 minutes of actual run-
time. Last year, I estimated that the system would have to be run under
this numerical integration scheme for approximately 2-3 hours to have the
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Figure 2: A plot of the wavenorm over time using each of the integration
methods.

norm deviate a ”non-negligible” amount of 1%. At this point, the system
would be of no qualitative or quantitative value anyway.

Future Plans and Development

Last year I also made measurements of the transmission coefficient of a
Gaussian packet through a barrier with varying initial momentum. I’d like
to perform the same test with the new eigenfunction method but, unfortu-
nately, my units no longer correlate as well as they used to. It would just
take another day or two to work this out... if I hadn’t screwed up the linker
between the GUI and the actual physics methods described above. It would
take the same day or two to get everything rewired correctly so that it’s ac-
tually usable. I seem to be out of time... Also, this project has spent more
time on the Computer Science front in designing and implementing the ap-
plet than the physics algorithms themselves and may have finally managed
to break my moral regarding patient applet design. Right now it’s not in a
usable state, but I’ll likely be fixing it over the summer.

Some improvements that could be made include unrolling the Complex
class within the code. This would make it a lot messier, but also faster since
there would be no class construction overhead. It seems that Paul Falstad
does this in his applet and uses various hacks to get the data he wants.
When it is running, it seems to do fine, but this is one optimization that
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could be done to squeeze out a couple more resolution points.
Another thing to work on is making it much more conducive to data

acquisition. This includes writing some general data-getting methods (such
as a better, possible interfaced, norm integrator; calibrating units; etc) so
that I could perform something like the barrier penetration comparison. I’m
very curious to see what effect the finite, and restricted, resolution from the
decomposition of the packet into eigenstates has on the test. Specifically,
if it’s better or worse than the direct numerical integrator, which suffers
from finite resolution in space and time. It seems that Falstad’s can’t do
this either because he can’t adjust the the X Gaussian and P Gaussian
independently, whereas in mine you can. You’d have to draw one yourself 3/4
offset in the box, not leaving you much room to measure the results. In mine,
I have a barrier potential preset that sets up the Gaussians (adjustable) for
you.

Implementing this in Matlab would give me many options for data analy-
sis. The built in complex values would be perfect.

Conclusion

My goal was to create a tool that could be used to test and develop intuition
in quantum mechanics. We have derived a direct numerical method for
solving the One-Dimensional Time-Dependent Schrödinger Equation and
have shown that it functions faithfully in real time. Furthermore, we’ve
presented an alternative method involving the decomposition of a given state
into its eigenstates and evolving those in time. We have shown that both
methods preserve the norm of a wave function to an acceptable degree,
upholding the Law of Conservation of Probability. In the future, I would like
to show that these methods also uphold theoretical predictions in quantum
tunnelling and examine any differences between the two methods.

The strength of this tool is present in its clarity, speed, and overall ac-
curacy of its results. Being able to watch the real time evolution of a wave
function over some potential gives an insight into the inner workings of quan-
tum mechanics that straight theory simply fails to.

I’ll give you a note once I rewrite the linker code and get it back online
to play with. The picture of the initial conditions for the Conservation of
Probability test shows the final GUI that I’m trying to rewire one last time.
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