
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2012; 89:105–133
Published online 3 August 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.3240

Optimizing the multipole-to-local operator in the fast multipole
method for graphical processing units

Toru Takahashi1,*,†, Cris Cecka2, William Fong3 and Eric Darve4

1 Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
2 Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305-4040, U.S.A.

3 Air and Missile Defense Department, Johns Hopkins University, Laurel, MD 20723-6099, U.S.A.
4 Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040, U.S.A.

SUMMARY

This paper presents a number of algorithms to run the fast multipole method (FMM) on NVIDIA CUDA-
capable graphical processing units (GPUs) (Nvidia Corporation, Sta. Clara, CA, USA). The FMM is a class
of methods to compute pairwise interactions between N particles for a given error tolerance and with com-
putational cost of O.N /. The methods described in the paper are applicable to any FMMs in which the
multipole-to-local (M2L) operator is a dense matrix and the matrix is precomputed. This is the case for
example in the black-box fast multipole method (bbFMM), which is a variant of the FMM that can handle
large class of kernels. This example will be used in our benchmarks.

In the FMM, two operators represent most of the computational cost, and an optimal implementation
typically tries to balance those two operators. One is the nearby interaction calculation (direct sum calcula-
tion, line 29 in Listing 1), and the other is the M2L operation. We focus on the M2L. By combining multiple
M2L operations and reordering the primitive loops of the M2L so that CUDA threads can reuse or share
common data, these approaches reduce the movement of data in the GPU. Because memory bandwidth is
the primary bottleneck of these methods, significant performance improvements are realized. Four M2L
schemes are detailed and analyzed in the case of a uniform tree.

The four schemes are tested and compared with an optimized, OpenMP parallelized, multi-core CPU
code. We consider high and low precision calculations by varying the number of Chebyshev nodes used
in the bbFMM. The accuracy of the GPU codes is found to be satisfactory and achieved performance over
200 Gflop/s on one NVIDIA Tesla C1060 GPU (Nvidia Corporation, Sta. Clara, CA, USA). This was com-
pared against two quad-core Intel Xeon E5345 processors (Intel Corporation, Sta. Clara, CA, USA) running
at 2.33 GHz, for a combined peak performance of 149 Gflop/s for single precision. For the low FMM accu-
racy case, the observed performance of the CPU code was 37 Gflop/s, whereas for the high FMM accuracy
case, the performance was about 8.5 Gflop/s, most likely because of a higher frequency of cache misses. We
also present benchmarks on an NVIDIA C2050 GPU (a Fermi processor)(Nvidia Corporation, Sta. Clara,
CA, USA) in single and double precision. Copyright © 2011 John Wiley & Sons, Ltd.

Received 6 November 2010; Revised 24 April 2011; Accepted 8 May 2011

KEY WORDS: fast multipole method (FMM); graphical processing units (GPUs); Nvidia CUDA; high
performance computing (HPC)

1. INTRODUCTION

1.1. Background of fast multipole method on graphical processing units

The fast multipole method (FMM), introduced by Rokhlin and Greengard in [1,2], is a fast algorithm
to sum the pairwise interactions between many bodies. It has been successfully applied to classical

*Correspondence to: Toru Takahashi, Department of Mechanical Science and Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan.

†E-mail: ttaka@nuem.nagoya-u.ac.jp

Copyright © 2011 John Wiley & Sons, Ltd.

106 T. TAKAHASHI ET AL.

particle simulations and solving integral equations [3]. A currently active area of study in the FMM
is its generalization [4–7]. The purpose is to construct an FMM that can handle an entire class
of kernels in a single FMM-like formulation and implementation. Such an FMM is often called a
kernel-independent FMM.

Similar to other variants proposed so far, the bbFMM [4] can handle non-oscillatory kernels and
requires O.N / operations. The advantages of the bbFMM are that it is applicable to a wide range
of kernels, only requires a user-supplied program sub-routine that evaluates numerically the kernel
(no analytical expansion is required), requires a small precomputation time, and can be proved to
minimize the number of coefficients for the far field representation (for the L2 norm).

Another active area of research is parallelization of the FMM. Since early works [8, 9], a variety
of parallel versions of the FMM have been proposed, implemented, and tested in various computing
environments (see [10], for example). Recently, commodity graphical processing units (GPUs) are
being adopted as a compute resource for the FMM as well as other scientific applications.

The emergence of GPUs as scientific computing platforms is due to its high computational power
and cheap cost. As of August 2010, the most powerful graphics board is AMD’s Radeon HD5970
(AMD, Sunnyvale, CA, USA) (with dual GPUs) [11]: the peak floating-point arithmetic per-
formance sustains 4.64 Tflop/s and 928 Gflop/s in the single and double precision, respectively;
the memory bandwidth is 256 GB/s (GDDR5); the price is about $650 with 2 GB RAM. These
numbers are much better than high-end CPUs. For example, AMD’s twelve core CPU Opteron 6176
SE 2.3 GHz (Magny-cours) sustains 220.8 Gflop/s for single-precision floating-point performance,
and 43 GB/s of bandwidth for $1386 (as of June 23, 2010 [12]). Also, Intel’s six core CPU Xeon
X5680 (Intel Corporation, Sta. Clara, CA, USA) 3.33 GHz (Westmere-EP) sustains 159.84 Gflop/s
for single-precision floating-point performance, and 32 GB/s of bandwidth for $1663 (as of July 18,
2010 [13]). Although, we must bear in mind that GPUs are coprocessors to CPUs, not replacements.
From a programming perspective, NVIDIA’s GPUs are preferable to AMD’s GPUs for computa-
tional physics applications. We can program NVIDIA’s GPUs using the C/C++ based computing
language CUDA [14]. With the development of OpenCL [15], a language for parallel program-
ming for heterogeneous systems, this GPU specific programming model may not be an issue in
the future.

1.2. Related works for fast multipole method on graphical processing units

In 2008, Gumerov et al. pioneered an FMM code running on GPU [16]. The three dimensional
Laplace kernel FMM achieved a speed up of 30 to 70 times (depending on the accuracy) on a
single NVIDIA GPU. For the multipole-to-local (M2L) operation, they applied the rotation coaxial-
translation rotation decomposition of White and Head-Gordon [17], a technique that rotates the
spherical harmonics to lower the computational cost. In addition, the maximum number of M2L
operations per receiver box (target box in our terminology) was reduced from 189 to 119 by means
of a stencil structure. Their elaborate M2L improves on the original M2L on CPU, but it was chal-
lenging to obtain an efficient implementation on GPU. Their M2L implementation showed relatively
low acceleration compared with other parts of the FMM.

Yokota et al. implemented the FMM and a variant (pseudo particle multipole method) for the
Laplace kernel on a PC cluster with 256 GPUs [18]. They basically followed the FMM in Gumerov
and Duraiswami [16], but independently developed an FMM code on their machine. Their FMM on
a single GPU was approximately 80 times faster than using two CPU cores. In addition, the FMM
on 32 GPUs had 66% parallel efficiency with 107 particles. This work was investigated by Hamada
et al. in conjunction with their high-performance GPU implementation of a tree code [19].

The paper by Lashuk et al. [20] has some similarities with this paper. The kernel-independent
FMM proposed by co-authors Ying et al. [6, 21] was implemented on multiple GPUs. However,
their M2L operation differs from ours. The GPU was applied to the diagonal translation step of their
M2L, which is a vector–vector multiplication. Thus, as mentioned in the paper, the calculation was
less efficient on the GPU because the ratio between arithmetic computation and memory traffic is
small. In a work related to Lashuk et al. [20], Chandramowlishwaran et al. [22] studied an optimiza-
tion of the M2L operation (V-list in their terminology) and the near interaction calculation (U-list)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 107

for the kernel-independent FMM of Ying et al. [6] for multicore systems, and compared their results
with [20] using GPUs.

Cruz et al. in [10] discussed developing computations on the GPU in their parallelized FMM
library, but the details, as far as we know, have not been unveiled.

1.3. Present work

In this paper, we investigate implementations of FMMs in which the M2L operator is a dense matrix,
such as in bbFMM [4], on an NVIDIA GPU. We will focus on the case of a uniform tree, in which
the leaf boxes have all the same size. We will refer the reader to Greengard and Lashuk et al.
[20, 23, 24] for a discussion of adaptive FMMs and their parallel implementation.

We will focus on strategies for performing the expensive M2L operation on a GPU. Thus, this
work is influenced by a paper written by Coulaud et al. [25] in which they proposed efficient algo-
rithms and implementations of the M2L operation (for the Laplace kernel) using the Basic Linear
Algebra Subprograms (BLAS) library [26] on a single CPU. Their basic idea is to concatenate a
number of M2L operations, each of which can be expressed as a matrix–vector product, into a single
matrix–matrix product and then to perform the product with a level 3 BLAS routine (GEMM). This
allows overlapping memory access with computations because the matrix–matrix products require
O.n3/ operations, whereas the memory transfer requires only O.n2/ operations (where n is the
size of matrices). The authors made it possible to aggregate many more M2L operations by con-
sidering a number of schemes to layout the multipole moments and local coefficients in memory.
Also, they proposed implementing their FMM code on shared and distributed architectures, includ-
ing GPU architectures with the help of BLAS library, but results have not yet been reported to our
knowledge. In [27], Couland et al. extended their formulation to an adaptive version of the FMM.

Similar to [25], we design methods that allow many M2L operations to be performed at once in
the form of a matrix–matrix product. However, in contrast to [25], we must keep in mind that a GPU
has many concurrent processing cores and that the memory storage per core is much smaller than
that of a typical CPU.

The key difficulty on a GPU is that using the efficient BLAS routines now available on these
platforms does not lead to significant speed-ups. The reason is that the matrices involved in the
M2L operations are too small to efficiently use the hardware, and matrix vector products are typi-
cally slow because they involve few flops per word read from memory. Consequently, we investigate
different blocking techniques that leverage the specific pattern of the M2L interaction list to increase
the flop to word read from memory ratio.

It is important to mention that the techniques described in this paper can be easily extended
because the M2L operation of the bbFMM has a structure common to many FMMs. Similar to
many other methods, the M2L operation of the bbFMM is based on the addition of matrix–vector
products, where the matrices (corresponding to the M2L operators) are dense, usually small
(. 1000), and precomputable.

The rest of this paper is organized as follows. Section 2 gives an outline of the FMM and the CPU
implementation. Section 3 introduces the compute unified device architecture (CUDA). In Section 4
through 8, we propose four methods for performing the M2L operation using CUDA. In Section 9
and 10, we investigate the performance and accuracy of our GPU-accelerated bbFMM.

2. OUTLINE OF THE FAST MULTIPOLE METHOD FORMULATION AND CPU
IMPLEMENTATION

2.1. Outline of the mathematical calculation and terminology

We wish to compute the matrix vector product:

f .xi / WD
NX
jD1

K.xi , yj / �j i 2 ¹1, : : : ,N º, (1)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

108 T. TAKAHASHI ET AL.

where xi and yj are N target and source points (particles), respectively, in a cubic domain

Œ� `
2

, `
2
�3 � IR3 where ` is the prescribed edge length of the domain and �j are source strengths.

In practice, we typically have xi D yi and the sum in (1) taken with j ¤ i . The kernel, K, is any
smooth, real-valued, non-oscillatory function. In a direct computation, (1) requires O.N 2/ opera-
tions. The bbFMM presented in [4] provides an O.N / approximation method to compute (1) by
means of the Chebyshev interpolation and the singular value decomposition (SVD) for the far field
evaluation associated with the FMM tree structure. We will not repeat the details of the method in
the body of this paper. A short summary is provided as Appendix A.

We first clarify some of the terminology related to the FMM tree structure that will be used
throughout this paper. Using a uniform octree, the cubic domain that contains all the N points is
called the box of level 0 or root box. We recursively obtain boxes of levels 1 to � by dividing a
box (parent box) at level k into eight cubes (child boxes) at level k C 1. We call such eight boxes
siblings. The boxes of level � are leaves (see Table I).

The bbFMM follows the usual FMM pattern of computation with an upward and downward pass.
From the standpoint of the GPU algorithms that we develop, the goal is to calculate products and
sums of the type:

L.T / WD
X

S2I.T /
D.T ,S/ M.S/ (2)

This corresponds to the M2L operator in the FMM. It will be referred to as the M2L formula
hereafter. The notations are as follows:

M.S/ array of multipole coefficients associated with box S
L.T / array of local expansion coefficients associated with box T
D.T ,S/ M2L operator associated with the pair of boxes .T ,S/
I.T / list of boxes in the interaction list of T

The interaction list I.T / is the set of boxes at the same level as T that of the following: 1) are not
adjacent to T ; and 2) whose parent box is adjacent to the parent box of T (Figure 1). There are at
most 189 (D 63 � 33) source boxes for each T .

A key assumption in terms of the GPU implementation is that the matrix D.T ,S/ is dense, and
no special mathematical relation (such as recurrence relation or other mathematical transformation)
is used to accelerate this product. In that sense, the work in this paper extends to any FMM that
requires such dense matrix vector products.

2.2. Implementation on CPU

We now describe a simple implementation of a bbFMM code for shared memory machines. In this
paper, we mainly focus on using single-precision floating-point arithmetic because when this work

Table I. Table of common notations.

Notation Description

x, xi / y, yj Target/source point (16 i , j 6N).
�j Coefficient of j th source point (16 j 6N).
` Edge length of the computational domain.
� Maximum (finest) level of octree.
n Number of Chebyshev nodes in each dimension.
r Chebyshev truncation (terms in expansion), equal to n3=2 [4].
T / S Target/source box with center t/s.
I.T / / N .T / Interaction/near-neighbor list of target box T .
D.T ,S/, D.i/ Multipole-to-local (M2L) operator from box S to T . IRr�r ,

called D-matrix or D-data (06 i < 316).
M Multipole coefficients, IRr , called M-vector or M-data.
L Local coefficients, IRr , called L-vector or L-data.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 109

Figure 1. Example of source boxes (I.T /; red) and near-neighbor boxes (N .T /; gray) for a given target
box (T ; blue) (left: 3D, right: 2D for illustration purposes). Note that boxes denoted by T 0 are the siblings

of T , and that T itself is included in its near-neighbor list.

was done, GPUs were an order of magnitude faster when computing in single precision rather than
double precision. For example, the peak performance of NVIDIA C1060 [28], which is used in
Section 9, is 933 Gflop/s in single precision, and only 78 Gflop/s in double precision. Nevertheless,
double precision is also examined using an NVIDIA C2050 [29] in Section 10.

In the case of single-precision floating-point arithmetic, the accuracy of the sum in (1) saturates
around n D 8, as investigated in [4]. In this paper, we consider n D 8 and n D 4 for comparison.
The corresponding numbers of multipole coefficients or cut-off numbers r are then 256 and 32,
respectively.

Listing 1 shows a pseudocode for the upward, interaction, and downward passes. The CPU imple-
mentation was not optimized beyond basic optimizations steps that include: openMP pragmas to run
on multiple cores, and optimization compiler options. Details are given in Section 9.1.3.

3. COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)

We briefly overview NVIDIA’s CUDA-capable GPUs [14].

3.1. Hardware configuration

An NVIDIA’s CUDA-capable GPU (device) is a programmable graphics card which acts as a copro-
cessor to a host CPU. GPUs typically have a large amount of DRAM memory (device memory)
which interacts with the host’s memory. A GPU contains multiple streaming multiprocessors (SMs),
which are run as single instruction multiple data (SIMD) processors and consist of eight scalar
processors (SPs) with 32-bit registers, shared memory, and an instruction unit. See Figure 2.

3.2. Programming

A GPU is a massively multithreaded coprocessor for parallel computing. Each thread executes a
program called a kernel. Similar to an ordinary C-function, a kernel is invoked by its host code from
the CPU, but a kernel is executed by an arbitrary number of threads on the GPU. Before invoking
a kernel and after terminating it, data may be transferred between the CPU and GPU via the device
memory. A kernel is written in the CUDA programming language, which is an extension of the
C/C++ language.

Threads running a kernel are grouped hierarchically. At the lowest level, each thread has a register
space available to it on the SM.

Then, a predefined number of threads are aggregated in a thread-block. Any thread within a
thread-block can be identified with its thread ID, which can be used to assign different data and/or
instructions to different threads. If two or more threads belong to the same thread-block, the threads
can share data via shared memory on the SM. For example, a thread may write data into the shared

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

110 T. TAKAHASHI ET AL.

Listing 1. Pseudo black-box fast multipole method code.

R R R

Host memory

 Host computer Graphics board

 GPU (device)

SP SP SP unit
Instruction

Device memory

CPU
SM SM

Shared memory

SM

Figure 2. CPU-GPU system: R stands for register.

memory and other threads may read it (although we have to make sure that the writing precedes
the reading). Cooperation of this sort is accomplished by being able to synchronize threads of a
thread-block at any time.

Finally, a prescribed number of thread-blocks are aggregated in a grid, which is invoked when
the kernel is executed. Any thread-block within a grid can be identified with its thread-block ID.
Although all threads of a grid have access to device memory, it cannot be used to communicate
between the threads because there is no synchronization between thread-blocks.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 111

3.3. Performance guidelines

We review some important and common guidelines [14], which will be used and referenced in this
paper. The description that is given is for devices of compute capability 1.x (e.g., Tesla C1060). See
[14] for devices of compute capability 2.x (e.g., Tesla C2050).

First is the choice of the number of threads per thread-block. A GPU can handle thousands of
threads concurrently and hundreds of threads per thread-block. In hardware, an SM decomposes a
thread-block into groups of 32 parallel threads called warps. If 32 threads in a warp execute one
common instruction, the execution time is the minimum (e.g., 32 single-precision floating-point
add, multiply, or multiply–add (MAD) instructions can be executed in 4 clock cycles). Otherwise,
the 32 threads diverge (i.e., instructions are executed serially or serialized by the relevant threads),
which results in lower performance. Therefore, it is important to choose the size of the thread-block
as a multiple of warp-size (32) and ensure that all threads can execute the same operations.

Second, the memory bandwidth is probably the single most important resource on the device.
An SM takes 400–600 clock cycles to read or write to the device memory. We therefore need to
minimize the number of accesses to the device memory. On the other hand, the memory latency of
shared memory and registers are much lower (e.g., 26 and 24 clock cycles, respectively, for G80
series [30]).

Third, we need to consider the memory access pattern. Roughly speaking, threads in a warp
should read from and write to contiguous addresses in memory for coalesced access. If the access
is not contiguous (or properly aligned within the memory), an SM serializes multiple memory
transactions to serve the request, which significantly degrades performance. Similarly, threads in
a half-warp (either the first or second half of a warp) can efficiently access data in shared memory,
provided there are no bank conflicts, which typically occur when any two threads in the half-warp
access the same shared-memory module.

Last, we may increase the number of active thread-blocks per SM. If two or more thread-blocks
can be assigned to a single SM, the SM has a chance to switch from one thread-block (that has
just begun doing memory transaction, for example) to another thread-block (that is ready to do
arithmetic operations, for example) so that the use of resources on the SM is maximized. The number
of active thread-blocks per SM can increase as the amount of hardware resources (shared memory,
registers, counters for threads, thread-blocks, warps, etc) requested per thread-block decreases. As
an example, we therefore need to write kernels that do not use excessive amounts of local variables.

4. DEVELOPMENT OF MULTIPOLE-TO-LOCAL SCHEMES FOR THE GRAPHICAL
PROCESSING UNIT

Along with the nearby interaction computation, which is performed by directly evaluating the ker-
nel, the M2L operation is the most time-consuming part of the bbFMM. Recall that all boxes of all
levels of the octree perform the M2L operation, and each box computes a summation of at most
(typically) 189 dense matrix–vector products, where the dimensions of the matrices are r � r . Thus,
we primarily explore efficient schemes to execute the M2L operation [Equation (2)] using CUDA.

Recall that the goal is to calculate the sums and products in Equation (2). This requires the four
primitive loops shown in Listing 2. At the highest level, the schemes differ in the ordering and
blocking of these required operations.

Listing 2. Multipole-to-local operation for a single level.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

112 T. TAKAHASHI ET AL.

In this paper, we propose and review four schemes. As we will show, the bottleneck of these
schemes is reading the D-matrix, which becomes central to the development of a highly efficient
method. From Listing 2, we see that optimizing these reads to maximize sharing and reuse of the
D-matrix requires taking advantage of the structure of I.T /. To this end, each method incremen-
tally introduces notations and structures that can be used to take advantage of the structure of the
mentioned loops and improve on previous schemes.

The first scheme is based on the simplest approach, in which the M2L operation of each box
is computed by one thread-block independent of other boxes. Although this is not a competitive
scheme, we present it because of its simplicity and its potential usefulness to readers not familiar
with CUDA codes.

In the second scheme, we block the loop over T and S by grouping eight sibling boxes into clus-
ters. Considering now a pair of clusters, many pairs .T ,S/ share the same D-matrix. We therefore
read a D-matrix and perform as many .T ,S/ interactions as possible using this D-matrix.

In the third scheme, we block computations one step further by grouping clusters into chunks and
then performing the same optimization. That is, we load a D-matrix and perform as many .T ,S/
interactions as possible within a chunk.

In contrast to the two previous schemes, which put the loops over i and j as the innermost loops,
the fourth scheme moves those loops to the outside, and the loops over T and S become the inner
loops. By reducing the storage requirements, this allows a more aggressive blocking of the .T ,S/
interaction pairs.

The differences between these methods will become clearer as they are presented, but the main
point is that when the ij -loops are the innermost loops (scheme 1–3), we are able to perform
the computations as a series of straightforward matrix-vector products which can be computed
efficiently on GPU hardware. The drawback is that the blocking is less efficient. With the fourth
scheme, the blocking is most efficient with nearly maximum data reuse. However, the innermost
loop of the fourth scheme is over the .T ,S/ pairs, which is slightly more difficult to perform on
GPU hardware because of the irregularities in the interaction list. This trade-off is part of what is
explored in this paper.

We now detail each scheme, presenting the technical optimizations required to achieve a nearly
optimal efficiency for each. The numerical benchmarks will show that with the current generation
of hardware, the fourth scheme outperforms the second and third ones, but are in a virtual tie with
one another.

To compare the efficiency of these four schemes, we compare the ratio of arithmetic operations
to data traffic (flop-to-word ratio) with the GPU-specific flop-to-word ratio (ratio of the peak perfor-
mance in flops to the peak bandwidth of the device memory). The GPU-specific flop-to-word ratio
provides an approximate target number of arithmetic operations per data that allows for the GPU to
run at its peak performance [30]. If a given scheme’s ratio is much less than the GPU’s flop-to-word
ratio, the primary bottleneck of the scheme is memory transfers.

Table II shows the GPU-specific flop-to-word ratios for a number of recent NVIDIA GPUs,
in which the peak performances are for MAD (multiply–add) operations, in consideration of our
matrix–vector products comprising mostly MAD operations.

Table II. Flop-to-word ratios of recent NVIDIA graphical processing units: peak performances are for the
multiply–add (MAD) operation in single-precision floating-point arithmetic.

GPU model GeForce GeForce GeForce Tesla Tesla
8800GTX 9800GTX+ GTX285 C1060 C2050

[30, 31] [32] [33] [28] [29]

Peak performance [Gflop/s] 346 470 708 624 1030
Bandwidth [GB/s] 86.4 70.4 159 102 115�

Flop-to-word ratio [flop/word] 16 27 18 24 36

�Error correcting code (ECC) is enabled.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 113

5. BASIC (NON-BLOCKING) SCHEME

This is the simplest method. We describe it mostly for readers who are not familiar with GPUs to
provide a simple algorithm that has reasonable performance. This approach will be outperformed
by revisions of this algorithm to follow in subsequent sections.

For a given level k 2 ¹2, : : : , �º, we assign one thread-block to one target box T and use r threads
for each thread-block. In each thread-block, the i th thread computes the i th row of L.T /. That is,
thread i of thread-block T computes

Li .T /D
X

S2I.T /

r�1X
jD0

D
.T ,S/
ij Mj .S/. (3)

This scheme has a two-level parallelism: the coarse parallelism over target boxes (T), and the
fine parallelism over rows (i). With this approach, we can expect a good load balance among both
thread-blocks and threads.

Listing 3 shows the loop ordering for this scheme. At level k, each kernel uses 8k thread-blocks,
each of which is assigned to a target box. In the case that 8k exceeds the maximum number of
thread-blocks per grid (e.g., 65535 for the Tesla C1060), we split the boxes into smaller groups and
launch the kernel multiple times until all groups have been processed.

Listing 3. Rough pseudocode for the first scheme single-level multipole-to-local operation.

Equation (3) implies that the M-data is common to all threads in a thread-block. Thus, we share
M-data within the thread-block. To this end, we let r threads read r elements of the M-data concur-
rently from the device memory and write them into shared memory. See listing 7 in Appendix B for
a more detailed GPU pseudocode.

Table III shows the data traffic for the device memory, the floating-point operation counts, and
the method’s flop-to-word ratio, which is calculated as the ratio of the operation counts to the total
data traffic. Note that one matrix–vector product requires exactly r.2r�1/ floating-point operations
(counting multiplications and additions). Note that this approach’s flop-to-word ratio is much less
than any GPU-specific flop-to-word ratio in Table II. Hence, the bottleneck of this scheme is the data
transfer. Reading the D-data is the most problematic and motivates us to investigate other schemes.

Table III. Statistics of the first scheme (basic scheme).

Per target box

Read M-data [word] 189r

Read D-data [word] 189r2

Write L-data [word] r

Operation counts [flop] 189r.2r � 1/

Flop-to-word ratio [flop/word] 1.9 for r D 32 (nD 4)
2.0 for r D 256 (nD 8)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

114 T. TAKAHASHI ET AL.

6. SIBLING-BLOCKING SCHEME: REUSE D-DATA IN SIBLINGS

6.1. Design

To reduce the number of D-data reads, we perform the M2L operation at the grain of clusters instead
of boxes, where we define a group of eight sibling boxes as a cluster. A pair of adjacent clusters
generally includes 8 � 8 interactions to be computed. Among such 64 interactions, we observe
that two or more interactions can typically be associated with a common M2L-transfer vector or
D-matrix. Thus, we can combine the corresponding matrix–vector products into a single matrix–
matrix product in which the D-data is reused.

To explain how to combine matrix–vector products, we introduce some terms. First, we define a
sibling index (0 to 7) for every cluster as in Figure 3. Next, for any given cluster (called a target
cluster), we define the source clusters as the clusters that are adjacent to the target cluster — no
other clusters interact with the target cluster. There are at most 26 (D 33 � 1) source clusters for
every target cluster. We identify such source clusters by a source-cluster index (0 to 26) defined as
in Figure 4. The source cluster with the index 13 can be ignored, because it is identical to the target
cluster so there is no interaction to be computed.

Table IV shows the sibling and cluster indices in the 2D case for illustration. The interaction-kinds
listed in Table IV (left) are sets of pairs .Ti ,Sj / which share the same D-data. Thus, 16 matrix–
vector products are reduced to 8 matrix–matrix products. Also, note that interaction-kinds, which
correspond to nearby interactions must be removed. We can specify such unallowable interaction-
kinds for each source-cluster index, as shown in Table IV (right). In three dimensions, we can
similarly reduce the 64 matrix–vector products to 27 matrix-matrix products. Table V (left) shows
the interaction-kinds and (right) the unallowable interaction-kinds for each source-cluster index cor-
responding to the nearby interactions. Note that the interactions of kind 0 to 7 remain matrix–vector
products because their D-matrices are not common to any other interactions.

S0 / T0

S1 / T1S2 / T2

S4 / T4

S5 / T5
S6 / T6

S7 / T7

xy

z
S0 / T0 S1 / T1

S2 / T2 S3 / T3

x

y

Figure 3. Definition of sibling indices in a cluster (left: 3D, right: 2D for explanation).

0
1

2
3

6 9
10

11
12

15 18
19

20
21

22
23

24

25
26

xy

z

Figure 4. Definition of source-cluster indices (0 to 26): the cluster with index 13 at the center (not visible)
is the target cluster.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 115

Table IV. To illustrate Table V, we depict the interaction-kinds in two dimensions.

Interaction-kind Interactions (A pair ’i -j ’ Source-cluster index Unallowable
denotes the interaction interaction-kinds

between Ti and Sj)

0 0-3 0 0
1 1-2 1 0, 1, 5
2 2-1 2 1
3 3-0 3 0, 2, 4
4 0-1, 2-3 4 0-8 (all)
5 0-2, 1-3 5 1, 3, 6
6 1-0, 3-2 6 2
7 2-0, 3-1 7 2, 3, 7
8 0-0, 1-1, 2-2, 3-3 8 3

T0 T1

T2 T3

S 0 S 1

S 2 S 3

S 0 S 1

S 2 S 3

S 0 S 1

S 2 S 3

S 0 S 1

S 2 S 3

S 0 S 1

S 2 S 3

S 0 S 1

S 2 S 3

S 0 S 1

S 2 S 3

S 0 S 1

S 2 S 3

0 1 2

3 4 5

6 7 8 T0 T1

T2 T3

S 0 S 1

S 2 S 35

T0 T1

T2 T3

S 0 S 1

S 2 S 32
(Left) List of 9 2D interaction-kinds in pairs of target clusters (consisting of T0 to T3) and source clusters (con-
sisting of S0 to S3).
(Right) List of unallowable interaction-kinds.
(Lower left) The sibling index and source cluster index of each box and cluster.
(Lower right) Examples of the unallowable interaction-kinds when the source cluster index is 5 and 2. (When the
source cluster index is 5, interaction-kinds 1:1-2, 3:3-0, and 6:1-0,3-2 are not allowed. When the source cluster
index is 2, only the interaction-kind 1:1-2 is not allowed.)

For example, Figure 5 shows three pairs of clusters, where T0–T7 and S0–S7 denote the target and
source siblings in a target cluster (TC in the code) and source cluster (SC in the code), respectively.
The source-cluster indices are 23, 26, and 14 for the cases left, center, and right, respectively (see
Figure 4). In each case, observe that the eight interactions of interaction-kind 26 (between T0 and
S0, : : :, and T7 and S7) share the same transfer vector. Also, this interaction-kind is allowable for
any source-cluster index (i.e., the interaction-kind of 26 is not found in Table V (right)). The eight
interactions can therefore be represented as the single matrix–matrix product

ŒL.T0/, L.T1/, : : : , L.T7/�D D.T0,S0/ ŒM.S0/, M.S1/, : : : , M.S7/� ,

where the dimension of the two matrices in the square brackets is r � 8.

6.2. Code and statistics

To implement this scheme in CUDA, we assign one thread-block to one target cluster, and use r
threads per thread-block. The i th thread computes the i th element of each of the eight L-vectors for
the target cluster. Namely, using pseudocode notations:

¹Li .Ta/, Li .Tb/, Li .Tc/, : : :ºC D
r�1X
jD0

D
.Ta ,Sd /
ij

®
Mj .Sd /, Mj .Se/, Mj .Sf /, : : :

¯
(4)

for all source clusters SC (at most 26) and all allowable interaction-kinds (at most 27), where the
pairs of boxes (i.e., Ta and Sd , Tb and Se , Tc and Sf , . . .) are determined by the source-cluster
index and interaction-kind.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

116 T. TAKAHASHI ET AL.

Table V. List of 27 3D interaction-kinds in a pair of target cluster and unallowable interaction-kinds.

Interaction- Interactions Source–cluster Unallowable
kind (A pair ’i -j ’ denotes index interaction-kinds

the interaction
between Ti and Sj)

0 0-7 0 0
1 1-6 1 0, 1, 8
2 2-5 2 1
3 3-4 3 0, 2, 9
4 4-3 4 0, 1, 2, 3, 8, 9, 11, 13, 20
5 5-2 5 1, 3, 11
6 6-1 6 2
7 7-0 7 2, 3, 13
8 0-6, 1-7 8 3
9 0-5, 2-7 9 0, 4, 10
10 0-3, 4-7 10 0, 1, 4, 5, 8, 10, 12, 16, 21
11 1-4, 3-6 11 1, 5, 12
12 1-2, 5-6 12 0, 2, 4, 6, 9, 10, 14, 17, 22
13 2-4, 3-5 13 0 – 26 (all)
14 2-1, 6-5 14 1, 3, 5, 7, 11, 12, 15, 18, 23
15 3-0, 7-4 15 2, 6, 14
16 4-2, 5-3 16 2, 3, 6, 7, 13, 14, 15, 19, 24
17 4-1, 6-3 17 3, 7, 15
18 5-0, 7-2 18 4
19 6-0, 7-1 19 4, 5, 16
20 0-4, 1-5, 2-6, 3-7 20 5
21 0-2, 1-3, 4-6, 5-7 21 4, 6, 17
22 0-1, 2-3, 4-5, 6-7 22 4, 5, 6, 7, 16, 17, 18, 19, 25
23 1-0, 3-2, 5-4, 7-6 23 5, 7, 18
24 2-0, 3-1, 6-4, 7-5 24 6
25 4-0, 5-1, 6-2, 7-3 25 6, 7, 19
26 0-0, 1-1, 2-2, 3-3, 26 7

4-4, 5-5, 6-6, 7-7

(Left) List of 27 3D interaction-kinds in a pair of target cluster (consisting of T0 to T7) and source cluster (con-
sisting of S0 to S7).
(Right) List of unallowable interaction-kinds. Note that any source clusters with index 13 are ignored because they
coincide with their field clusters.

Listing 4 shows the loops ordering for this scheme. At level k, each kernel uses 8k�1 thread-
blocks, each of which is assigned to a target cluster. See Listing 8 in Appendix B for more detailed
GPU pseudocode. Additional optimizations, that are too long to describe in this manuscript were
implemented to account for some of the memory limitations and special characteristics of the device.
The actual code can be found online in [34].

Table VI shows the statistics of our implementation of the second scheme. The traffic of D-data is
successfully reduced to 46% of the first scheme. Also, the traffic of M-data decreases from 189r to
26r . The flop-to-word ratio is about twice as large than the first scheme, but still significantly less
than the GPU-specific ratio given in Table II.

7. CLUSTER-BLOCKING SCHEME: SHARE D-DATA IN CLUSTERS

7.1. Design

The D-matrix traffic is further reduced by sharing it within groups of clusters. We call a group of
B �B �B clusters a chunk of size B . Figure 6 shows chunks of size 2.

In this scheme, the order of cluster interaction is chosen such that all B3 clusters share the same
D-data. A difficulty at this point is that the blocking is in effect so large that we cannot store the
entire D-matrix in memory. As a result, we split the D-matrix into tiles and denote such tiles by
Dpq (0 6 p < P and 0 6 q < Q), where the dimension of every tile is r

P
� r
Q

(see Figure 7).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 117

T0

T1T2

T4

T5T6

T7
S 0

S 1S 2

S 4

S 5S 6

S 7

S 0

S 1S 2

S 4

S 5S 6

S 7

T0

T1T2

T4

T5T6

T7

S 0

S 1

S 4

S 5

S 6

S 7

T0

T1T2

T4

T5T6

T7

Figure 5. Example of three pairs of target and source clusters. The source-cluster indices are 23, 26, and 14
for the cases left, center, and right, respectively.

Listing 4. Rough pseudocode for the second scheme single-level multipole-to-local operation.

Table VI. Statistics of the second scheme (sibling-blocking scheme).

Per target cluster Per target box

Read M-data [word] 8 � 26 � r 26r

Read D-data [word] 26 � 27 � r2 26�27
8 r2

Read/Write L-data [word] 8 � 26 � r 26r

Operation counts [flop] 8 � 189 � r.2r � 1/ 189r.2r � 1/

Flop-to-word ratio [flop/word] 4.2 for r D 32
4.3 for r D 256

Level 3

ch
un

k
cl

us
te

r
bo

x

Level 4

ch
un

k
cl

us
te

r
bo

x

Level 2
x

z

y

ch
un

k

cl
us

te
r

bo
x

Figure 6. Chunks of size 2 for levels 2, 3 and 4.

Correspondingly, the vectors L and M are split into P and Q parts, respectively. They are denoted
by Lp and Mq . One limitation is that the M-vectors now need to be read more often compared with
the second scheme, because we need to read it once for each row tile.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

118 T. TAKAHASHI ET AL.

Figure 7. Splitting L-vector(s), M-vector(s), and D-matrix into tiles: this shows the case of P D Q D 8.
The sets of ¹Ta,Tb ,Tc , : : :º and ¹Sd ,Se ,Sf , : : :º depend on the underlying source-cluster index and

interaction-kind (see Table V).

We use two-dimensional thread-blocks of size r
P
�B3, and assign one thread-block to one chunk.

In each thread-block, the .i ,TC/-th thread (where 0 6 i < r
P

and 0 6 TC < B3) manages the i th
row of all the sub-vectors Lp for all the eight boxes T0, : : : ,T7 in the TC -th cluster.

7.2. Code and statistics

Listing 5 shows the loop ordering for this scheme. At level k, each kernel uses 8k�1=B3 thread-
blocks, each of which is assigned to a chunk of boxes. See Listing 9 in Appendix B for more
detailed GPU pseudocode. The actual code can be found online in [34].

Listing 5. Rough pseudocode for the third scheme single-level multipole-to-local operation.

Table VII shows the statistics of this scheme. The key improvement is that the traffic of D-data
now scales like 1=B3 whereas the traffic for the M-data scales like P . We present the results for
B D 2 because of shared memory constraints for storing the M-data. In the case of r D 32, we use
P D Q D 1; that is, it is unnecessary to split the D-matrix into tiles. In the case of r D 256, we
choose P DQD 8. In both cases, the dimension of the thread-blocks is 32� 8.

With the previously mentioned parameters, we can obtain flop-to-word ratios about 8 .D B3/

times higher than the second scheme. These flop-to-word ratios are comparable to the GPU-specific
ratio of 24 for the Tesla C1060 in Table II. Note that the performance of the third scheme may be
compute limited rather than bandwidth limited if the scheme is run on the 8800GTX or GTX285.

8. IJ -BLOCKING SCHEME: YET ANOTHER SHARING OF D-DATA

This scheme attempts to obtain a higher flop-to-word ratio by considering a large-scale blocking
of boxes but in a manner different from the third scheme. Essentially we chose as inner loop the
interaction list loop over the .T ,S/ pairs, the outer loop becoming the loop over i and j .

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 119

Table VII. Statistics of the third scheme (cluster-blocking scheme).

Per chunk of size B Per target box

Read M-data [word] 8B3 �P �Q � 26 � r
Q

26P r

Read D-data [word] P �Q � 26 � 27 � r
P
� r
Q

26�27
8B3

r2

Write L-data [word] 8B3 �P � r
P

r

Operation counts [flop] 8B3 � 189 � r.2r � 1/ 189r.2r � 1/

Flop-to-word ratio [flop/word] 21 for r D 32, B D 2, P DQD 1
32 for r D 256, B D 2, P DQD 8

2
0 1

3

Sibling index 0 index 1 index 2 index 3

-3

Y

+3

+3-3 X

1
2 3
0

1
2 3
0 1

2 3
0

Figure 8. Example of allowable multipole-to-local-transfer vectors (white boxes, blue arrows) and unallow-
able transfer vectors (colored boxes, green arrows) in 2D (for illustration purposes). These sets depend on

the sibling index of the box.

8.1. Design

A thread-block is assigned to one chunk of size B . Each thread is assigned to a box in a chunk.
Thus, we use 8B3 threads per thread-block. We compute all 8B3 L-vectors for every chunk as fol-
lows. First, for a given column index j (0 6 j < r), we let all the 8B3 threads share Mj for the
.2B C 4/� .2B C 4/� .2B C 4/ boxes that enclose the relevant chunk. To deal with the boundary
of the domain, we appropriately place ghost boxes outside of the domain, and let Mj D 0 in each

ghost box. Next, for a given row index i , we let all the threads share D.I /
ij for all 316 indices I .

Finally, using the shared M-data and D-data, each thread computes

Lij .T / WD
X

S2I.T /
D
.T ,S/
ij Mj .S/, (5)

where T denotes the target box that the relevant thread is assigned to. Last, the result is accumulated
into Li .T /. This process is repeated for all i and j .

This scheme can share D-data between 8B3 threads, whereas the previous scheme shares between
B3 threads. Because the storage requirements for the fourth scheme are different from the third
scheme, we are able to use B D 4 in the fourth scheme, but only B D 2 in the third scheme.

However, the present scheme has a special difficulty originating from the asymmetric treatment
of the eight siblings. Namely, the total number of M2L-transfer vectors is 316 .D 73 � 33/ but the
target boxes only request a subset of 189 .D 63�33/ vectors, which depends on their sibling-index.
This is illustrated by Figure 8 in the two-dimensional case. This can perturb the access pattern for
the shared M-data in the computation of (5) and degenerate the performance because of the resulting
warp-serializations and/or bank conflicts for shared-memory.

This issue is resolved optimally for GPUs with compute capability 1.x, for which the bank con-
flict can be avoided. For GPUs with compute capability 2.x, because of the way bank conflicts can
happen, the optimal ordering of operations results in a two-way bank conflict (that is, for each bank,
two threads are accessing the bank). This cannot be avoided. First, we store .2B C 4/3 M-data so
that data for the same sibling-index is stored together into a three-dimensional shared-memory array
(Figure 9). Next, we assign a group of B3 threads to B3 target boxes with the same sibling-index.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

120 T. TAKAHASHI ET AL.

Store 6x6x6 data
into a shared-memory
array according to
sibling-index

index 012x12x12
M-data
for a chunk
of size 4

index 1

index 3 ...

ξη

ζ

(5,0,0)(ξ,η,ζ)=(0,0,0)

ζ=0

ζ=1

ζ=2

ζ=5

White numbers denote
the offset from the
baseaddress

(5,5,5)

Cluster

x
y

z

...

Data layout

Figure 9. Layout of M-data in three-dimensional shared-memory arrays, in which we assume that B D 4.

f

f

f

ζ=0 ζ=1 ζ=2 ζ=3

0 1 2 3 4 5
6 7 8 9 a b
c d e 0 1
2 3 4 5 6 7
8 9 a b c d
e 0 1 2 3 2 3

4 5
6 7

8 9

a b
c d

e

0 1e

4 5 6 7
a b c d
0 1 2 3

8 9

4 5 6 7 a b

0 1c d e f

c d e
ζ=4 ζ=5

0 1 2 3 4 5

e f 0 1 2 3 2 3

8 94 5 6 7

4 5 6 7

ξη

ζ

M-data for
a sibling-index
in 6x6x6
shared-memory
array

4x4x4 data requested
by another M2L-vector

4x4x4 data requested
by a M2L-vector

ξ

η

0 1 2 3

c d e f

2 3 4 5 6 7

4 5 6 7

0 1 2 3

8 9 e f

c d e f

8 9 a b

0 1a b

8 9 a b

4 5 6 7

c d

η=0
η=1
η=2
η=3

HW0
HW1
HW2
HW3

6 7 8 9 a b c d 2 3 4 5e f 0 1

6 7

c d8 9 a b

8 9 a b

a
0

e
4

2 3 4 5
8 9 a b

a b c d
0 1 2 3c d

e 2 3
4 5

6 7

8 96 7
0 1

6 7 8 9 a b
c d e f 0 1
2 3 4 5 6 7
8 9 a b c d

4 5
6 7 a b
c d

e f

0 1e f
8 9

8 9
b e
1

2 3

4 52 3

0 1
5 6 7

c d

f 0 1 2

b c d e

1 2 3 4 5 6

3 4 5 6

f 0 1 2

7 8 d e

b c d e

7 8 9 a

f 09 a

7 8 9 a

3 4 5 6

b c

5 6 7 8 9 a b c 1 2 3 4d e f 0

η=1
η=2
η=3
η=4

Bank numbers for 6x6 data in each ζ are given as follows:

16 threads in HW0 can access bank-freely

Assign half-warps 0 to 3

f

f

f

f

f

Figure 10. Suppose B D 4. (Top): We illustrate M-data stored in a 6 � 6 � 6 shared-memory array for a
certain sibling-index (Figure 9) and the 4� 4� 4 data (either red or blue cube) requested by 4� 4� 4 target
boxes with the same sibling-index. (Middle): We illustrate the shared-memory bank IDs (0 to f; there are
16 shared-memory banks per SM for the GPUs with compute capability 1.x) given to the 6 � 6 � 6 shared-
memory array. (Bottom): We notice that, if one half-warp (HW) is assigned to a slice of 4 � 4 data for a
fixed �, the half-warp can read the 16 data without bank-conflicts because their bank IDs are different from

one another.

Then, for a given M2L-vector, all the B3 threads can read the requested B3 data from the same
shared-memory array, which is necessary to prevent the warps for the B3 threads from diverging
(we assume that B3 is a multiple of the warp-size). To avoid bank-conflicts for the shared-memory
arrays, we have to make each half-warp in every B3 threads read their 16 words from different
banks. This is readily possible when B D 4 as illustrated in Figure 10. For greater Bs, if we assume
B D 2k with k > 2, we can also avoid such bank-conflicts in reading the requested B3 M-data
because we can read every 43 words in the same way as the case of B D 4.

Note that the present scheme cannot work for coarse levels because chunks of size B cannot be
defined for such levels. In addition, when one thread-block is assigned to one chunk, the number
of thread-blocks issued is small. To resolve these problems, another scheme is applied for levels
ranging from 2 to a prescribed level kswitch.> 2/, whereas the present scheme is applied to levels

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 121

kswitchC1 to �. Moreover, r rows of L-vector are split into P tiles, and thus, one chunk is processed
by P thread-blocks. Then, the .G,p/th thread-block is assigned to the Gth chunk for pth row tile,
where 06G < 8k=.8B3/ for level k and 06 p < P . In the tests presented in Section 9, we applied
the sibling-blocking (second) scheme to level 2 (that is, we choose kswitch D 2) and P D 8 for the
low precision case (i.e., r D 32) and P D 16 for the high precision case (i.e., r D 256).

8.2. Code and statistics

Listing 6 shows the loop ordering for this scheme. At level k, each kernel uses 8k�1=B3 thread-
blocks, each of which is assigned to a chunk of boxes. See Listing 10 in Appendix B for more
detailed GPU pseudocode. The actual code can be found online in [34].

Listing 6. Rough pseudocode for the fourth scheme single-level multipole-to-local operation.

Table VIII shows the statistics. We can obtain a very large flop-to-word ratio over 100 withB D 4.
Here, P D 8 and 16 are assumed (and they were actually used in our numerical benchmarks in
Section 9), but P is less sensitive to the flop-to-word ratio than B .

9. NUMERICAL RESULTS

In the following sections, we investigate the performance and accuracy of the GPU-accelerated
bbFMM program in comparison with an optimized multi-core bbFMM program run on the CPU.

9.1. Setup

9.1.1. N-body system. We consider systems of particles uniformly distributed in a cubic domain
with edge length of one (`D 1) with N D 103, : : : , 107 particles and octree depths of � D 2, 3, 4, 5,
and 6, respectively, according to � WD logN= log 8�1 as in [4]. The source strengths ¹�j º are either
C1 or �1, with net zero strength in total.

The test kernel is the Laplace kernel K.x, y/ D 1=jx � yj. Note that the choice of kernel in the
bbFMM does not affect the performance of the M2L operation.

Table VIII. Statistics of the fourth scheme (ij -blocking scheme).

Per chunk of size B Per target box

Read M-data [word] .2B C 4/3 � r �P .BC2/3P

B3
r

Read D-data [word] 316 � r � r
P
�P 316

8B3
r2

Read/write L-data [word] 2 � 8B3 � r � r
P
�P 2r2

Operation counts [flop] 8B3 � 189 � r
P
.2r � 1/ �P 189r.2r � 1/

Flop-to-word ratio [flop/word] 108 for r D 32, B D 4, P D 8
133 for r D 256, B D 4, P D 16

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

122 T. TAKAHASHI ET AL.

9.1.2. Computer. In the first series of tests, we used a DELL Poweredge 1950 with two quad-core
Intel Xeon E5345 CPUs running at 2.33 GHz (4 MB shared L2 cache per two cores) with 16 GB
of 667 MHz DDR2 SDRAM (5.333 GB/s) [35] on Intel 5000X chipset [36]. Each core has the
SSE3 (streaming SIMD instructions 3) unit. All eight cores can share 16 GB of memory. The peak
performance in single-precision floating-point is 18.64 Gflop/s per core and 149.12 Gflop/s in total.

For the GPU, we used one of four NVIDIA Tesla C1060 graphics cards [28] in a Tesla S1070
connected to this machine via PCIe 8x. A C1060 has 30 SMs (1.30 GHz of clock rate; 16 KB
of shared memory per SM; 16384 32-bit registers per SM) and 4 GB of device memory. When
three single-precision floating-point operations are performed per clock cycle, the peak speed is
933 Gflop/s. When a multiply–add (add or multiply) operation is processed per clock cycle, it is
624 and 312 Gflop/s, respectively.

We used Intel’s C/C++ compiler 10.1 (with optimizing options -O3 and -xT) for the C codes,
and NVIDIA’s CUDA SDK 2.2 for the CUDA codes.

9.1.3. Codes. Following Section 2, we developed a single-precision bbFMM program optimized
for the earlier mentioned shared memory machine. This code is referred to as the CPU code
hereafter.

The M2L operation of the CPU code is implemented with a scheme similar to the sibling-blocking
scheme (Section 6). Accordingly, the loop over boxes (line 15 in Listing 1) was replaced with a
loop over clusters. We then parallelized the loop using the eight cores by prepending the OpenMP
directive ‘#pragma omp parallel for.’ In addition, we vectorized the loop over rows (the
summation over j in Equation (4)) with the SSE3 units.

From the CPU code, we developed a GPU-accelerated bbFMM program by altering the M2L
computation according to Sections 5 to 8. This program can choose one of the four M2L schemes,
which we refer to as the GPU1, 2, 3, and 4 codes appropriately. Note that the GPU4 code uses the
second scheme for the lower levels, whereas the fourth scheme is used for higher levels (Section 8.1).

For comparison, we also implemented the direct code on CPU, which is an O.N 2/ implementa-
tion of the sum in Equation (1) using single-precision floating-point arithmetic.

9.2. Accuracy results

We checked the accuracy of the four GPU codes in comparison with the CPU code and the direct
code by measuring the relative L2-error, ", given by

" WD

"PN
iD1.f

target.xi /� f reference.xi //2PN
iD1.f

reference.xi //2

1
2

,

where ‘target’ and ‘reference’ stand for a target code and its reference, respectively.
Table IX shows the errors of the CPU and four GPU codes versus the direct code run in single

precision. The direct code took too much time to execute the N D 107 case. The errors of the GPU
codes are of the same order as those of the CPU code in both the low (r D 32) and high (r D 256)
precision cases. Indeed, Table X shows that the error of the GPU codes versus the CPU code is at
the level of single-precision round-off error. Furthermore, we note that the dependency of error on
n in Table IX agrees with Figure 6(a) in [4].

In the next section, we discuss the M2L kernels in more detail as they are the primary focus of
this study.

9.3. Multipole-to-local results

Table XI shows the timing and performance of the M2L kernels. Here, we measured the time with
the Read Time Stamp Counter (RDTSC) for C codes and the event management functions for CUDA
codes [14]. Each time is the average of 10 executions. The performance is computed as ‘(the num-
ber of the M2L operations in the tree) � (floating-point operations per M2L operation, that is,
r.2r � 1/)=(elapsed time of the M2L stage)’. The M2L operations were indeed accelerated by the
GPU. The performances of GPU3 and GPU4 sustained a hundred Gflop/s or more for large N .

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 123

Table IX. Error versus direct code (top: r D 32, bottom: r D 256): The direct code is implemented in
single-precision floating-point arithmetic.

N CPU GPU1 GPU2 GPU3 GPU4

103 3.25091e-04 3.25130e-04 3.25108e-04 3.25119e-04 3.25108e-04
104 7.33478e-04 7.33501e-04 7.33459e-04 7.33455e-04 7.33462e-04
105 6.66763e-04 6.66775e-04 6.66768e-04 6.66741e-04 6.66764e-04
106 7.83211e-04 7.83177e-04 7.83209e-04 7.83210e-04 7.83209e-04

N CPU GPU1 GPU2 GPU3 GPU4

103 1.46095e-06 1.78251e-06 1.49480e-06 1.69537e-06 1.49480e-06
104 3.27401e-06 3.64197e-06 3.19091e-06 3.69513e-06 3.19252e-06
105 7.11934e-06 7.45730e-06 7.13091e-06 7.57058e-06 7.12101e-06
106 1.84872e-05 1.86662e-05 1.84916e-05 1.87624e-05 1.84984e-05

Table X. Error of GPU codes versus CPU code
(top: r D 32, bottom: r D 256).

N GPU1 GPU2 GPU3 GPU4

103 6.86350e-07 2.89722e-07 5.02913e-07 2.89722e-07
104 1.10693e-06 4.46567e-07 9.60799e-07 4.58189e-07
105 1.44904e-06 4.22898e-07 1.29688e-06 4.60100e-07
106 1.81868e-06 5.08796e-07 1.74660e-06 5.68528e-07
107 1.52659e-06 4.47121e-07 1.51480e-06 4.89664e-07

N GPU1 GPU2 GPU3 GPU4

103 1.11132e-06 3.63981e-07 1.03731e-06 3.63981e-07
104 1.95096e-06 6.60109e-07 2.03845e-06 6.48679e-07
105 2.53376e-06 6.29465e-07 2.77803e-06 6.75485e-07
106 2.96203e-06 7.61351e-07 3.52526e-06 8.57488e-07
107 2.63074e-06 6.26272e-07 2.95823e-06 7.44576e-07

For small N , the performance of GPU3 is worse than the other methods. When � is small, GPU3
does not issue enough thread-blocks to make full use of all SMs of the GPU.

The performance of GPU1 and GPU2 saturate asN increases. The reason is that the performances
were bounded by data transfer between SMs and the device memory of GPU, as we can expect from
the comparison of the scheme’s flop-to-word ratios with the GPU-specific ratio. To see this more
quantitatively, we determine an upper bound on the performance because of the GPU’s peak band-
width. This corresponds to the lower bound on the method’s runtime if it were to only read and write
the required data at the peak bandwidth of the GPU. This performance (called the bandwidth peak
performance [37]) of a scheme is given by

Bandwidth peak performance [flop/s]D
Total arithmetic count [flop]

Total data traffic [B]
Peak bandwidth [B/s]

D
Flop-to-word ratio [flop/word]

4 [B/word]
Peak bandwidth [B/s]

, (6)

where the peak bandwidth is 102 GB/s as in Table II, and the scheme’s flop-to-word ratios are
given in Tables III, VI, VII, and VIII. The bandwidth peak performances are shown in Table XII.
These results are plotted in Figure 11 together with the measured performance shown in Table XI.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

124 T. TAKAHASHI ET AL.

Table XI. Performance of multipole-to-local kernels using a Tesla C1060 (top: r D 32, bottom: r D 256),
measured in Gflop/s.

Code / � 2 3 4 5 6

CPU 11.4 32.0 37.0 37.6 37.6
(5.51e–4) (3.56e–3) (3.49e–2) (3.24e–1) (2.81e+0)

GPU1 16.2 32.4 39.4 40.9 41.1
(3.84e–4) (3.51e–3) (3.28e–2) (2.98e–1) (2.57e+0)

GPU2 6.4 24.6 57.7 69.6 71.4
(9.75e–4) (4.62e–3) (2.24e–2) (1.75e–1) (1.48e+0)

GPU3 1.5 13.8 62.7 128.9 156.8
(4.15e–3) (8.26e–3) (2.06e–2) (9.45e–2) (6.73e–1)

GPU4 6.5 33.8 120.1 210.3 220.0
(9.65e–4) (3.37e–3) (1.08e–2) (5.80e–2) (4.80e–1)

Code / � 2 3 4 5 6

CPU 8.6 8.8 8.6 8.6 8.6
(4.70e–2) (8.35e–1) (9.72e+0) (9.18e+1) (7.98e+2)

GPU1 41.9 41.9 42.1 41.8 41.7
(9.67e–3) (1.76e–1) (1.99e+0) (1.89e+1) (1.64e+2)

GPU2 51.7 91.2 100.7 101.7 101.3
(7.83e–3) (8.10e–2) (8.32e–1) (7.77e+0) (6.76e+1)

GPU3 1.6 14.4 65.2 133.1 161.6
(2.56e–1) (5.12e–1) (1.29e+0) (5.93e+0) (4.24e+1)

GPU4 51.8 88.7 177.9 241.9 269.5
(7.81e–3) (8.32e–2) (4.71e–1) (3.27e+0) (2.54e+1)

The numbers in parenthesis are the timing in second. Note that GPU4 is equivalent to GPU2 for � D 2.

Table XII. Bandwidth peak performance calculated from Equation (6):
Unit is Gflop/s.

r GPU1 GPU2 GPU3 GPU4

32 49 93 542 2742
256 51 107 816 3167

The bandwidth peak performances approximately agree with their upper bounds of measured
performances. Therefore, the performances of GPU1 and GPU2 are indeed bounded by data transfer.

On the other hand, GPU3 and GPU4 seem to overcome the bottleneck of data transfers in view
of their flop-to-word ratios. Nevertheless, the measured performances in Table XI were less than
the arithmetic peak performance of 624 Gflop/s for MAD operation, although they were close to
312 Gflop/s for add or multiply operation per clock cycle. This inefficiency might be a consequence
of insufficient number of active thread-blocks per SM. Indeed, the item (v) of Table XIII shows
that the number of active thread-blocks per SM in GPU3 and GPU4 is only one, which makes it
impossible for an SM to hide the memory latency by alternating thread-blocks.

In Table XIII, the items (v) and (vi) show the utilizations of registers and shared memory in the
present implementations, respectively. If we utilize much more resources on GPU, for example,
registers to prefetch certain data [30], we may be able to obtain faster codes.

Finally, we discuss the performance of the CPU code, whose scheme is similar to GPU2. As
shown in Table XI, the sustained performance of the CPU code clearly saturates as N increases,
similar to GPU1 and GPU2. The bandwidth peak performance calculated from Equation (6) is 22.4
and 22.9 Gflop/s for r D 32 and 256, respectively, where we used the GPU2’s flop-to-word ratio and
the read bandwidth of 21.3 GB/s [36]. The result for r D 256 is roughly close to the upper bounds
of the bandwidth peak performance. In the case r D 32, it is likely that computations were mostly
performed with data in cache, rather than main memory.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 125

Figure 11. Performance of multipole-to-local kernels and bandwidth peak performance (left: r D 32, right:
r D 256).

Table XIII. Profile of the GPU kernels (r D 256; Tesla C1060 GPU).

Item GPU1 GPU2 GPU3˙ GPU4\ Maximum

(i) # of threads per TB 256 256 256 512 512
(ii) # of REGs per thread 11 16 30 26 16384/(i)
(iii) SMEM per TB [KB]� 2.5 4.1 14.7 11.7 16
(vi) # of active TBs per SM� 4 3 1 1 8
(v) Utilization of REGs [%][69 75 47 81 100
(vi) Utilization of SMEM [%]] 62 77 92 73 100

TB, thread-block; REG, register; SMEM, shared-memory.
�We counted this number from the kernels directly.
�This number is given by the minimum of (maximum # of REGs per SM; 16384)/(ii) and (maximum amount of
SMEM per SM; 16 KB)/(iii), whereas neither the number of active warps nor threads or TBs per SM can exceed
their maximums.
[This is given by (i)� (ii)� (vi)=(maximum # of REGs per SM).
]This is given by (iii)� (ii)� (vi)=(maximum amount of SMEM per SM).
˙ B D 2 is used.
\ B D 4 and P D 16 are used and numbers are those for k > kswitch.

10. BENCHMARKS USING FERMI PROCESSORS

The GPU-accelerated programs presented in Section 9 correspond to GPUs of compute capa-
bility 1.x. Our methods also apply to newer architectures, such as Fermi [38], or GPUs of compute
capability 2.x, some of which are designed to offer high performance in double precision.

We made a few modifications to the GPU4 code, which obtained the best performance on Tesla
C1060 as seen in Table XI, so that the hardware resources on a Fermi processor can be better utilized.
To this end, we re-examined the loop unrolling for the columns j (line 9, Listing 10, Appendix B),
and tile rows i (line 13), letting P D 4 for any r . The best value for unrolling was determined
through numerical tests. As a result, the utilizations of registers and shared memory are kept at the
same level as those in Table XIII for both single precision and double precision. On the other hand,
the shared-memory bank conflict cannot be avoided, as mentioned in Section 8.1. This is because
Fermi processors have 32 banks for their shared memory, compared with 16 banks for GPUs of
capability 1.x. For the latter, bank conflicts between two half warps cannot occur [14]. As a result,
a two-way bank conflict occurs on Fermi processors (the single and double precision cases present
the same issues).

We used a DELL Precision T7500 with two six-core Intel Xeon X5680 CPUs (3.33 GHz) on
Intel X5520 chipset with 1333 MHz DDR3 RDIMM (32 GB/s of bandwidth per CPU) [13]. This is
not the same CPU that was used in the previous tests. In particular this CPU was found to outper-
form the CPU on the DELL Poweredge 1950. The peak performance of the Intel Xeon X5680 for

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

126 T. TAKAHASHI ET AL.

12 cores is 319.68 and 159.84 Gflop/s for single precision and double precision, respectively. The
workstation is equipped with an NVIDIA Tesla C2050 graphics card [29], which is based on the
Fermi architecture. The peak performance for MAD operation is 1.03 Tflop/s and 515 Gflop/s for
single precision and double precision, respectively. The memory bandwidth (ECC on) is 115 GB/s.
Thus, the flop-to-word ratio is 36 for both single and double precision. This number is less than
the flop-to-word ratio of GPU4 in Table VIII. In the benchmark here, we used the Intel C/C++ 12.0
compiler (with optimizing options -O3 and -xSSE4.2) for the C codes, and NVIDIA’s CUDA
SDK 3.2 for the CUDA codes.

Table XIV shows the errors of the CPU and four GPU codes versus the direct code in the case
of double precision (the result for single precision is omitted because it is similar to the result in
Table IX), where the direct code was run at the same precision as the other codes. In all codes, the
accuracy for r D 32 was not improved by using double precision instead of single precision because
the error due to truncating r to 32 is greater than the single-precision round-off error. Meanwhile,
an improvement was observed for r D 256 (the error was reduced from � 10�6 to � 10�7).

Table XV compares the error of the GPU codes with the CPU code in the double-precision case.
The errors are comparable to the machine round-off error.

Tables XVI and XVII show the performance of the M2L kernels. The CPU used in this test out-
performs the CPU used in the previous results. For the CPU code, with r D 256 in single precision,
a 4.3 (D 41.3=8.6) times speedup is observed relative to the CPU performance in Table XI; it results

Table XIV. Error versus direct code for double precision using Tesla C2050 (top: r D 32, bottom: r D 256):
The direct code is implemented in double precision. There is no difference between any of the codes for

each N in the present numeric format.

N CPU GPU1 GPU2 GPU3 GPU4

103 3.22720e-04 3.22720e-04 3.22720e-04 3.22720e-04 3.22720e-04
104 7.32120e-04 7.32120e-04 7.32120e-04 7.32120e-04 7.32120e-04
105 6.66505e-04 6.66505e-04 6.66505e-04 6.66505e-04 6.66505e-04
106 7.80298e-04 7.80298e-04 7.80298e-04 7.80298e-04 7.80298e-04

N CPU GPU1 GPU2 GPU3 GPU4

103 1.30735e-07 1.30735e-07 1.30735e-07 1.30735e-07 1.30735e-07
104 2.80162e-07 2.80162e-07 2.80162e-07 2.80162e-07 2.80162e-07
105 2.52779e-07 2.52779e-07 2.52779e-07 2.52779e-07 2.52779e-07
106 2.99511e-07 2.99511e-07 2.99511e-07 2.99511e-07 2.99511e-07

Table XV. Error of GPU codes versus CPU code for double precision using Tesla C2050 (top: r D 32,
bottom: r D 256).

N GPU1 GPU2 GPU3 GPU4

103 1.30775e–15 5.67221e–16 1.02956e–15 5.67221e–16
104 2.33102e–15 8.45871e–16 1.81839e–15 9.06713e–16
105 2.78896e–15 8.15784e–16 2.46338e–15 9.11237e–16
106 3.24408e–15 9.69221e–16 3.24737e–15 1.09494e–15
107 2.76807e–15 8.43073e–16 2.68563e–15 9.19547e–16

N GPU1 GPU2 GPU3 GPU4

103 2.71648e–15 6.80833e–16 2.40215e–15 6.80833e–16
104 6.29231e–15 1.26256e–15 6.78295e–15 1.34415e–15
105 7.62251e–15 1.13736e–15 8.70325e–15 1.41340e–15
106 8.65915e–15 1.53186e–15 1.17202e–14 1.78414e–15
107 8.15838e–15 1.23552e–15 9.69601e–15 1.49434e–15

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 127

Table XVI. Performance of multipole-to-local kernels for single precision using Tesla C2050, measured in
Gflop/s (top: r D 32, bottom: r D 256).

Code / � 2 3 4 5 6

CPU 36.9 94.9 119.8 123.9 125.2
(1.44e–3) (1.20e–3) (1.08e–2) (9.83e–2) (8.43e–1)

GPU1 30.5 58.9 70.3 72.1 72.0
(2.05e–4) (1.93e–3) (1.84e–2) (1.69e–1) (1.47e+0)

GPU2 11.1 43.3 113.0 142.7 146.9
(5.63e–4) (2.63e–3) (1.14e–2) (8.53e–2) (7.18e–1)

GPU3 3.6 32.6 133.4 230.0 257.3
(1.75e–3) (3.49e–3) (9.68e–3) (5.29e–2) (4.10e–1)

GPU4 11.1 49.8 173.1 302.2 358.8
(5.63e–4) (2.28e–3) (7.46e–3) (4.03e–2) (2.95e–1)

Code / � 2 3 4 5 6

CPU 33.8 38.7 40.3 41.0 41.3
(1.21e–2) (1.91e–1) (2.08e+0) (1.93e+1) (1.66e+2)

GPU1 44.6 46.0 46.5 46.5 46.4
(9.08e–3) (1.60e–1) (1.80e+0) (1.70e+1) (1.48e+2)

GPU2 62.8 116.5 120.3 120.1 134.1
(6.45e–3) (6.34e–2) (6.97e–1) (6.58e+0) (5.11e+1)

GPU3 3.7 33.6 135.9 227.2 258.5
(1.10e–1) (2.20e–1) (6.17e–1) (3.48e+0) (2.65e+1)

GPU4 62.7 64.8 192.1 319.0 375.5
(6.46e–3) (1.13e–1) (4.36e–1) (2.48e+0) (1.82e+1)

The numbers in parenthesis are the timing in second.
Note that GPU4 is equivalent to GPU2 for � D 2, and the CPU code is parallelized with 12 cores on dual Xeon
X5680 CPUs (3.33 GHz).

from the improvement of the bandwidth by a factor of 32� 2=21.3D 3.00 rather than the improve-
ment of arithmetic performance by a factor of .12=8/� .2.33=3.33/D 2.14, because the bottleneck
of the CPU code, which is based on the sibling-blocking scheme (GPU2), is the bandwidth rather
than computation. We also observe that the drop in performance on the CPU when going from single
to double precision is less than 2 with r D 32 and very close to 2 with r D 256.

In the case of single precision, the trends for the C2050 are similar to that of C1060 in Table XI.
The more recent Fermi hardware is approximately 1.5–2 times faster than the Tesla C1060. The
drop in performance from single to double varies but was found to be close to 2.

11. CONCLUSION

We investigated techniques to accelerate the black-box FMM of [4] with CUDA-capable GPUs
[14], in the case of a uniform FMM tree. This paper focused on the implementation of the
time-consuming M2L operation, which consists of at most 189 dense matrix–vector products for
every box in a given level. We presented the four schemes for the M2L operation with different
memory bandwidth requirements (flop-to-word ratios), which usually become the bottleneck when
one runs an application on a GPU. Our strategy to improve the flop-to-word ratio is to block boxes
to reuse or share the common data, such as the M2L operators (D-matrices).

In numerical tests using 103 to 107 particles, the four GPU codes that correspond to the four
M2L schemes were implemented for NVIDIA GPUs of compute capability of 1.x and tested on a
Tesla C1060. High and low precisions were considered by running with two different Chebyshev
expansion orders (n D 4 and 8, respectively); n D 8 is close to the smallest number that gives
the best accuracy with single-precision floating-point arithmetic. All the GPU codes ran without

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

128 T. TAKAHASHI ET AL.

Table XVII. Performance of multipole-to-local kernels for double precision using Tesla C2050, measured
in Gflop/s (top: r D 32, bottom: r D 256).

Code / � 2 3 4 5 6

CPU 23.6 57.4 72.9 75.0 77.8
(2.65e–4) (1.98e–3) (1.77e–2) (1.62e–1) (1.36e+0)

GPU1 12.8 22.9 26.6 27.1 27.1
(4.87e–4) (4.96e–3) (4.85e–2) (4.49e–1) (3.89e+0)

GPU2 9.5 36.2 77.1 92.0 95.5
(6.56e–4) (3.14e–3) (1.68e–2) (1.32e–1) (1.11e+0)

GPU3 2.2 20.1 65.4 97.9 109.6
(2.84e–3) (5.65e–3) (1.98e–2) (1.24e–1) (9.63e–1)

GPU4 9.5 26.2 83.4 140.3 165.1
(6.54e–4) (4.35e–3) (1.55e–2) (8.68e–2) (6.39e–1)

Code / � 2 3 4 5 6

CPU 17.0 17.9 19.0 19.2 19.4
(2.39e–2) (4.11e–1) (4.42e+0) (4.13e+1) (3.52e+2)

GPU1 23.1 23.7 23.9 23.9 23.9
(1.75e–2) (3.12e–1) (3.51e+0) (3.30e+1) (2.87e+2)

GPU2 41.4 52.5 56.3 57.1 57.2
(9.79e–3) (1.41e–1) (1.49e+0) (1.38e+1) (1.20e+2)

GPU3 2.2 20.5 66.2 99.0 110.8
(1.80e–1) (3.61e–1) (1.27e+0) (7.98e+0) (6.18e+1)

GPU4 41.3 30.3 88.4 145.9 171.1
(9.81e–3) (2.44e–1) (9.48e–1) (5.42e+0) (4.00e+1)

The numbers in parenthesis are the timing in second.
Note that GPU4 is equivalent to GPU2 for � D 2, and the CPU code is parallelized with 12 cores on dual Xeon
X5680 CPUs (3.33 GHz).

significant degeneration of the results. The present GPU codes outperformed a parallelized CPU
code using eight cores on dual Intel Xeon E5345 CPUs. Furthermore, we ran the GPU codes on a
Tesla C2050, which is based on the Fermi architecture. In comparison with the CPU code using 12
cores of dual Intel Xeon X5680 CPUs, we confirmed the advantage of the GPU codes, including the
double-precision case.

The proposed M2L schemes would be applicable to other FMM variants because our schemes
are not dependent on the specifics of the bbFMM. In particular, if the M2L operator is dense, our
schemes are immediately applicable. For example, the M2L operation of the low-frequency regime
FMM [39] related to wave analyses (acoustics, electrodynamics, elastodynamics, etc) can be repre-
sented by such a dense matrix–vector product. As of now, we applied the basic and sibling-blocking
schemes to the low-frequency fast-multipole accelerated boundary integral equation method [40].

APPENDIX A: DETAILS OF THE BLACK-BOX FAST MULTIPOLE METHOD [4] OF FONG
AND DARVE

For simplicity, we will assume that K is a translation invariant and homogeneous function of
degree �. That is, K.x C c, y C c/ D K.x, y/ for any c 2 IR3 and K.˛x,˛y/ D ˛�K.x, y/ for
any ˛ 2 IRn¹0º. These assumptions are common to many particle simulations in electrostatics,
elastostatics, stationary Stokes flow problems, etc.

The bbFMM separates the variables x and y in the kernel K.x, y/ using a Chebyshev interpola-
tion. Such separation of variables is key to constructing an FMM. Let x be a point in a box T (target
box) at level k with center t and let y be a point in a box S (source box) at level k with center s. Let
T and S be well-separated. By virtue of homogeneity, we can scale these boxes, with edge lengths

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 129

of `=2k , to boxes with unit length. Then, applying the .n � 1/th order Chebyshev interpolation to
K.x, y/ for every dimension of x and y, we obtain

K.x, y/�
�

`

2kC1

��X
l

X
m

Rn.Nxl, Ox/K.Nxl, Nym/Rn.Nym, Oy/, (A.1)

where Ox WD .x � t/=.`=2kC1/ and Oy WD .y � s/=.`=2kC1/ are the scaled target and source points,
respectively, and

Nxm D . Nxm1 , Nxm2 , Nxm3/ 2 Œ�1, 1�3 and Nym D . Nym1 , Nym2 , Nym3/ 2 Œ�1, 1�3

are 3-vectors of Chebyshev nodes. These are the roots of Tn.x/ WD cos.n arccos x/, the Chebyshev
polynomial of degree n [41]. The numbers li and mi are integers between 1 and n. Also,

Rn.x, y/ WD Sn.x1,y1/Sn.x2,y2/Sn.x3,y3/,

where Sn is the interpolation function defined as

Sn.x,y/ WD
1

n
C
2

n

n�1X
kD1

Tk.x/Tk.y/ x,y 2 Œ�1, 1�.

The prefactor .`=2kC1/� in (A.1) is due to the homogeneity of K. We can rewrite (A.1) in the
following matrix form:

K.x, y/�
�

`

2kC1

��
ST
n.Nx, Ox/K.Nx, Ny/Sn.Ny, Oy/, (A.2)

where Sn.Nx, Ox/ is the n3-dimensional vector whose .l1C.l2�1/nC.l3�1/n2/-th element is defined
as Rn.Nxl, Ox/ and K.Nx, Ny/ is the n3�n3 matrix whose .l1C .l2�1/nC .l3�1/n2,m1C .m2�1/nC
.m3 � 1/n

2/-th element is K.Nxl, Nym/. In general, K is dense.
The matrix K in (A.2) corresponds to the M2L operator. BecauseK is translation invariant, K can

be represented by 316 (D 73�33) matrices K.i/ (06 i < 316) that correspond to 316 M2L-transfer
vectors indexed by .v1, v2, v3/, where

.v1, v2, v3/ 2 Œ�3, 3�3 n Œ�1, 1�3.

Finally, to improve the computational cost of the M2L operation (A.2), with K replaced with
K.i/, we approximate the rank-n3 matrix K.i/ with a rank-r matrix by means of the SVD. More pre-
cisely, we apply the SVD to the weighted kernel matrix .�x/

1
2K.i/.�y/

1
2 instead of K.i/ so that the

error in the low-rank approximation can be minimized with respect to the L2 norm in x and y. The
matrices�x and�y are n3�n3 diagonal matrices whose .l1C .l2� 1/nC .l3� 1/n2/-th diagonal
elements are given by .�=n/3

p
1� Nxl1

p
1� Nxl2

p
1� Nxl3 and .�=n/3

p
1� Nyl1

p
1� Nyl2

p
1� Nyl3 ,

respectively. They correspond to quadrature weights (see [4]).
Now, let us consider the SVD of the following n3 � 316n3 matrix Kfat and 316n3 � n3 matrix

Kthin:

Kfat WD
h
.�x/

1
2K.0/.�y/

1
2 , .�x/

1
2K.1/.�y/

1
2 , : : : , .�x/

1
2K.315/.�y/

1
2

i
,

Kthin WD
h
.�x/

1
2K.0/.�y/

1
2 I .�x/

1
2K.1/.�y/

1
2 I : : : I .�x/

1
2K.315/.�y/

1
2

i
.

We used the MATLAB [42] notations ‘,’ and ‘;’ for row and column vectors. We obtain the following
316 SVD-compressed transfer matrices (operators):

D.i/ WD UT
r .�

x/
1
2K.i/.�y/

1
2Vr ,

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

130 T. TAKAHASHI ET AL.

where Ur (respectively Vr) is the n3�r matrix whose i th column is the i th left (resp. right) singular
vectors associated with the r largest singular values of Kfat (resp. Kthin). The compressed transfer
matrices D.i/ are r � r-dimensional and dense. It was found that choosing the number r (cut-off
number) equal to n3=2 gives good results.

Using the fact that �x and �y are invertible and that Ur and Vr are unitary matrices, we can
express the far field interaction between two well-separated boxes T and S at level k as follows:

f .xi /�
�

`

2kC1

��
ST
n.Nx, Oxi /.�x/�

1
2UrD.T ,S/VT

r .�
y/�

1
2

X
¹j j yj2Sº

Sn.Ny, Oyj / �j

for xi 2 T , where .T ,S/ is a short hand notation indicating one of the 316 indices that corresponds
to the M2L-transfer vector between T and S . Here, the product of D.T ,S/ with its right-hand side
vector is called as the M2L operation (see Equation (2)) and its product with the remaining part
(sparse matrix) is called as the post-M2L operation, which is not expensive relative to the M2L
operation.

APPENDIX B: GPU PSEUDOCODE

Listing 7. Pseudo multipole-to-local kernel of the firsts cheme (basic scheme).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 131

Listing 8. Pseudo multipole-to-local kernel of the second scheme (sibling-blockingscheme).

Listing 9. Pseudo multipole-to-local kernel of the third scheme (cluster-blocking scheme).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

132 T. TAKAHASHI ET AL.

Listing 10. Pseudo multipole-to-local kernel of the fourth scheme (ij-blocking scheme).

ACKNOWLEDGEMENTS

We thank the Army High Performance Computing Research Center at Stanford for letting us use some
of their facilities. In addition, the first author is grateful to the financial support from MEXT KAKENHI
(22760062) and the Hori Information Science Promotion Foundation.

REFERENCES

1. Rokhlin V. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics 1985;
60(2):187–207.

2. Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal of Computational Physics 1987;
73(2):325–348.

3. Nishimura N. Fast multipole accelerated boundary integral equation methods. Applied Mechanics Review 2002;
55:299–324.

4. Fong W, Darve E. The black-box fast multipole method. Journal of Computational Physics 2009; 228(23):
8712–8725.

5. Gimbutas Z, Rokhlin V. A generalized fast multipole method for nonoscillatory kernels. SIAM Journal of Scientific
Computing 2002; 24(3):796–817.

6. Ying L, Biros G, Zorin D. A kernel-independent adaptive fast multipole algorithm in two and three dimensions.
Journal of Computational Physics 2004; 196(2):591–626.

7. Martinsson PG, Rokhlin V. An accelerated kernel-independent fast multipole method in one dimension. SIAM
Journal of Scientific Computing 2007; 29(3):1160–1178.

8. Greengard L, Gropp WD. A parallel version of the fast multipole method. Computers and Mathematics Application
1990; 20(7):63–71.

9. Zhao F, Johnsson SL. The parallel multipole method on the connection machine. SIAM Journal Scientific and
Statistical Computing 1991; 12(6):1420–1437.

10. Cruz FA, Knepley MG, Barba LA. PetFMM – A dynamically load-balancing parallel fast multipole library.
International Journal for Numerical Methods in Engineering 2011; 85(4):403–428.

11. ATI Radeon HD 5970 Graphics Feature Summary. http://www.amd.com/us/products/desktop/graphics/ati-radeon-
hd-5000/hd-5970/Pages/ati-radeon-hd-5970-overview.aspx#1 [18 April 2011].

12. AMD Opteron 6000 series platform. http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/6000-
SERIES-PLATFORM/Pages/6000-series-platform.aspx [18 April 2011]. The price is referenced from http://www.
amd.com/us/products/pricing/Pages/server-opteron.aspx [18 April 2011].

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

THE MULTIPOLE-TO-LOCAL OPERATOR IN THE FAST MULTIPOLE METHOD 133

13. Intel Xeon Processor 5600 series. http://www.intel.com/itcenter/products/xeon/5600/?iid=gg_work+home_
xeon5600, [18 April 2011]. The price is referenced from http://www.intc.com/priceList.cfm [18 April 2011].

14. CUDA Programming Guide Version 3.2. http://www.nvidia.com/object/cuda_develop.html [18 April 2011].
15. Khronos Group’s OpenCL homepage. http://www.khronos.org/opencl/ [18 April 2011].
16. Gumerov N, Duraiswami R. Fast multipole methods on graphics processors. Journal of Computational Physics 2008;

227(18):8290–8313.
17. White CA, Head-Gordon M. Rotating around the quartic momentum barrier in fast multipole method. The Journal

of Chemical Physics 1996; 105(12):5061–5067.
18. Yokota R, Narumi T, Sakamaki T, Kameoka S, Obi S, Yasuoka K. Fast multipole methods on a cluster of GPUs for

the meshless simulation of turbulence. Computer Physics Communications 2009; 180(11):2066–2078.
19. Hamada T, Narumi T, Yokota R, Yasuoka K, Nitadori K, Taiji M. 42 TFlops hierarchical N-body simulations on

GPUs with applications in both astrophysics and turbulence. Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, Portland, Oregon. Article No. 62, 2009.

20. Lashuk I, Chandramowlishwaran A, Langston H, Nguyen T-A, Sampath R, Shringarpure A, Vuduc R, Ying L,
Zorin D, Biros G. A massively parallel adaptive fast-multipole method on heterogeneous architectures. Proceedings
of the Conference on High Performance Computing Networking, Storage and Analysis, Portland, Oregon. Article
No. 58, 2009.

21. Ying L, Biros G, Zorin D, Langston H. A new parallel kernel-independent fast multipole algorithm. Proceedings of
SC03, The SCxy Conference series, Phoenix, Arizona, 2003.

22. Chandramowlishwaran A, Madduri K, Vuduc R. Diagnosis, tuning, and redesign for multicore performance: a case
study of the fast multipole method. Proceedings of ACM/IEEE Conf. Supercomputing (SC), New Orleans, LA, USA,
2010.

23. Carrier J, Greengard L, Rokhlin V. A fast adaptive multipole algorithm for particle simulations. SIAM Journal on
Scientific and Statistical Computing 1988; 9:669–686.

24. Cheng H, Greengard L, Rokhlin V. A fast adaptive multipole algorithm in three dimensions. Journal of Computa-
tional Physics 1999; 155(2):468–498.

25. Coulaud O, Fortin P, Roman J. High performance BLAS formulation of the multipole-to-local operator in the fast
multipole method. Journal of Computational Physics 2008; 227(3):1836–1862.

26. BLAS (Basic Linear Algebra Subprograms) homepage. http://www.netlib.org/blas/ [18 April 2011].
27. Coulaud O, Fortin P, Roman J. High performance BLAS formulation of the adaptive fast multipole method.

Mathematical and Computer Modelling 2010; 51:177–188.
28. NVIDIA’s Tesla C1060 board specification. http://www.nvidia.com/docs/IO/43395/BD-04111-001_v05.pdf

[18 April 2011].
29. NVIDIA’s Tesla C2050 board specification. http://www.nvidia.com/object/personal-supercomputing.html

[18 April 2011].
30. Volkov V, Demmel J. LU, QR and Cholesky factorizations using vector capabilities of GPUs. LAPACK Work-

ing Note 2008; 202:UCB/EECS-2008-49. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html
[18 April 2011].

31. NVIDIA’s GeForce 8 series specification. http://www.nvidia.com/page/geforce8.html [18 April 2011].
32. NVIDIA’s GeForce 9800GTX+ board specification. http://www.nvidia.com/object/product_geforce_9800_gtx_plus_

us.html [18 April 2011].
33. NVIDIA’s GeForce GTX 285 board specification. http://www.nvidia.com/object/product_geforce_gtx_285_us.html

[18 April 2011].
34. The present CUDA kernels etc are available from http://sourceforge.net/projects/bbfmmgpu [18 April 2011].
35. Quad-Core Intel Xeon Processor 5300 Series Datasheet, September 2007. http://www.intel.com/Assets/en_US/PDF/

datasheet/315569.pdf [18 April 2011].
36. Intel 5000X Chipset Memory Controller Hub (MCH) Datasheet. http://www.intel.com/products/server/chipsets/

5000x/5000x-technicaldocuments.htm [18 April 2011].
37. Volkov V, Kazian B. Fitting FFT onto the G80 architecture, http://www.cs.berkeley.edu/~kubitron/courses/

cs258-S08/projects/reports/project6_report.pdf [18 April 2011].
38. Glaskowsky P. NVIDIA’s Fermi: The first complete GPU architecture, September 2009. http://www.nvidia.com/

content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA’s_Fermi-The_First_Complete_GPU_Architecture.pdf
[18 April 2011].

39. Epton MA, Dembart B. Multipole translation theory for the 3-dimensional Laplace and Helmholtz equations. SIAM
Journal Scientific Computing 1995; 16(4):865–897.

40. Takahashi T, Cecka C, Darve E. An implementation of low-frequency fast multipole BIEM for Helmholtz’ equa-
tion on GPU. Proceedings of JSME 23rd Computational Mechanics Conference (CD-ROM), Hokkaido, Japan, 2010;
319–321.

41. Abramowitz M, Stegun IA (eds). Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical
Tables (eighth Dover printing). Dover: New York, 1972.

42. Website for MATLAB. http://www.mathworks.com/products/matlab/ [18 April 2011].

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:105–133
DOI: 10.1002/nme

